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(ii) The composition 34(K) — 3 — 34(O) is the morphism (97) for
A =34(0).

(iii) The morphism (100) is Aut K-equivariant.
We will not prove this theorem. In fact, the only nontrivial statement is
that (99) (or equivalently (34)) is a ring homomorphism; see 7?7for a proof.
The natural approach to the above theorem is based on the notion of
VOA (i.e., vertex operator algebra) or its geometric version introduced in
[BD] under the name of chiral algebra.?! In the next subsection (which can

be skipped by the reader) we outline the chiral algebra approach.

3.7.6. A chiral algebra on a smooth curve X is a (left) Dy-module A

equipped with a morphism
(101) G (AR A) — ALA

where A : X — X x X is the diagonal, j : (X x X)\ A(X) — X. The
morphism (101) should satisfy certain axioms, which will not be stated here.
A chiral algebra is said to be commutative if (101) maps AX A to 0. Then
(101) induces a morphism A,(A® A) = jj' (AR A)/ARA — A,A or,

which is the same, a morphism
(102) A A— A.

In this case the chiral algebra axioms just mean that A equipped with
the operation (102) is a commutative associative unital algebra. So a
commutative chiral algebra is the same as a commutative associative unital
Dx-algebra in the sense of 2.6. On the other hand, the Dx-module Vady
corresponding to the Aut O-module Vac' by 2.6.5 has a natural structure of
chiral algebra (see the Remark below). The map 34(O)x — Vacy induced
by the embedding 34(O) — Vac' is a chiral algebra morphism. Given a point
r € X one defines a functor A — A((,)) from chiral algebras to associative

topological algebras. If A = Ax for some commutative Aut O-algebra A

2Tn 2.9.4 — 2.9.5 we used some ideas of VOA theory (or chiral algebra theory).



102 A. BEILINSON AND V. DRINFELD

then A((,)) is the algebra Ag, from 3.7.3. If A = Vady then A((@)) 18
the completed twisted universal enveloping algebra U = U/(g ® K). So
by functoriality one gets a morphism 34(K) = 34(0)x — U Its image is

contained in 3 because 34(O)x is the center of the chiral algebra Vacy.

Remark. Let us sketch a definition of the chiral algebra structure on Vacly.
First of all, for every n one constructs a D-module Vac’Symn x on Sym"X
(for n = 1 one obtains Vac). The fiber Vacp, of Vacg,nx at D € Sym”™X
can be described as follows. Consider D as a closed subscheme of X of order
n, denote by Op the ring of functions on the formal completion of X along
D, and define Kp by Spec Kp = (SpecOp) \ D. One defines the central
extension gg\f?p of g ® Kp just as in the case n = 1. Vad, is the twisted
vacuum module corresponding to the Harish-Chandra pair (gg\l?p, G(Op))

(see 1.2.5). Denote by Vac, x the pullback of Vacg . to X x X. Then

(103) §' Vady . x = j'(Vady B Vady),

104 At Vad = Vad
XxX X

where j and A have the same meaning as in (101) and AT denotes the naive

pullback, i.e., AT = H'A'. One defines (101) to be the composition
Gug' Vacdy ® Vacy = Gug' Vacx . x — uj! Vacdyy x/ Vady  x = AxVady
where the last equality comes from (104).

3.7.7. Theorem. (i) The morphism (100) is a topological isomorphism.

(ii) The adjoint action of G(K) on 3 is trivial.

The proof will be given in 3.7.10. It is based on the Feigin - Frenkel
theorem, so it is essential that g is semisimple and the central extension
of g ® K corresponds to the “critical” scalar product (18). This was not
essential for Theorem 3.7.5.

We will also prove the following statements.
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3.7.8. Theorem. The map gr3 — 3° defined in 2.9.8 induces a topological
isomorphism gr;3 —— 3%) := {the space of homogeneous polynomials from

3¢ of degree 7}.

3.7.9. Theorem. Denote by Z, the closed left ideal of U topologically
generated by g®t" O, n > 0. Then the ideal I, := Z,,N3 C 3 is topologically
generated by the spaces 3!, m < i(1—n), where 37" := {z € 3;|Loz = mz},
3; is the standard filtration of 3, and Lg := —t% € Der O.

3.7.10. Let us prove the above theorems. The elements of the image of
(100) are G(K)-invariant (see the Remark from 2.9.6). So 3.7.7(ii) follows
from 3.7.7(i). Let us prove 3.7.7(i), 3.7.8, and 3.7.9.

By 2.5.2 gr34(0) = 3?(0). According to 2.4.1 53(0) can be identified
with the ring of G(O)-invariant polynomial functions on g* ® wp. Choose
homogeneous generators py, . .. , p, of the algebra of G-invariant polynomials

on g* and set d; := degp;. Define vj;;, € 3Cl(0), 1<j<r,0<k<oo,by
(105) Zvjk M), negtewo.

According to 2.4.1 the algebra 33 (O) is freely generated by v;;. The action
of Der O on 3?(0) is easily described. In particular v;y = (L_1)*vjo/k!,
Lovjo = djvjo. Lift vjo € 331(0) = gr3g(0O) to an element u; € 34(O)
so that Lou; = dju;. Then the algebra 34(O) is freely generated by
ujp = (L_l)kuj/k!, 1 <j7<r 0<k< oo Justasin the example
at the end of 3.7.3 we see that 34(O)x = C[[... ,u;—1,j0, Uj1,...] and
Lo, = (dj + k).

Denote by %), the image of uj; in 3. By 2.9.8 U, € 34, and the image

of ujy, in 3&') is the function vj; : g* ® wx — C defined by
(106) Zvjk Fand, neg @wk.
We have an isomorphism of topological algebras

(107) 3% =C[[...9j-1,j0,j1, - - -]
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because
the algebra of G(O)-invariant polynomial functions
on g* ® t "wp is freely generated by the restrictions
(108) of vjj, for k > —nd; while for k < —nd; the restriction
of v to g* ® t™"wo equals 0.
(This statement is immediately reduced to the case n = 0 considered in
2.4.1). Theorem 3.7.8 follows from (107).

Now consider the morphism f,, : 34(O)x — 3/1, where I,, was defined in

3.7.9. We will show that

fn is surjective and its kernel is the ideal J,, topolog-
(109) ically generated by u;, k < dj(1 —n).
Theorems 3.7.7 and 3.7.9 follow from (109).

To prove (109) consider the composition f, : 34(O)x — 3/I, —
(U /1,)6©). Equip U /T, with the filtration induced by the standard
one on U. The eigenvalues of Ly on the i-th term of this filtration
are > i(1 —n). So Kerf, D J, where J, was defined in (109). Now
gr(U'/T,)¢©) is contained in (grU /Z,,)%©), i.c., the algebra of G(O)-
invariant polynomials on g* ® t""wp. Using (108) one easily shows that
the map 34(0)r/Jn — (U /Z,)%©) induced by f,, is an isomorphism. This
implies (109). We have also shown that

(110) the map 3 — (U /Z,)%©) is surjective
and therefore
(111) 3= (U)%.

3.7.11.  Remarks
(i) Here is another proof?? of (111). Let u € (U )%(©). Take h € H(K)

where H C G is a fixed Cartan subgroup. Then h~ uh is invariant with

respect to a certain Borel subgroup By, C G. So h™luh is G-invariant

22Tt is analogous to the proof of the fact that an integrable discrete representation of

g ® K is trivial. We are not able to use the fact itself because U’ is not discrete.
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(it is enough to prove this for the image of h~!uh in the discrete space
U//In where Z,, was defined in 3.7.9). Therefore u is invariant with
respect to hgh™! C g® K for any h € H(K). The Lie algebra g ®@ K
is generated by g ® O and hgh~!, h € H(K). So u € 3.

(ii) In fact

(112) 3=(U)" forany openaC g® K.

Indeed, one can modify the above proof as follows. First write u
as an (infinite) sum of u,, x € b* = (LieH)*, [a,u,] = x(a)uy
for a € h. Then take an h € H(K) such that the image of h in
H(K)/H(O) = {the coweight lattice} is “very dominant” with respect
to a Borel subalgebra b C g containing b, so that h=*ah O [b,b].
We see that u, = 0 unless x is dominant, and h™lugh is g-invariant.
Replacing h by h~! we see that u = ug, etc.

(iii) Here is another proof of 3.7.7(ii). Consider the canonical filtration U;
of U'. Tt follows from (109) that the union of the spaces U; N3, keN,
is dense in 3. So it suffices to show that the action of G(K) on U;ﬂ n3
is trivial for every k. The action of G(K) on 3% is trivial (see (107),
(106)). So the action of G(K) on gr 3 is trivial. The action of g ® K
on ;é?( corresponding to the action of G(K) defined by (19) is the
adjoint action, and the adjoint action of g ® K on 3 is trivial. So the

action of G(K) on 3 factors through mo(G(K)). The group mo(G(K))

is finite (see 4.5.4), so we are done.

3.7.12. We are going to deduce Theorem 3.6.7 from [FF92]. Denote
by ALg(O) the coordinate ring of Opry(O) (i.e., the scheme of Lg-opers
on SpecO). Let po : ALy(O) — 3¢(O) be an isomorphism satisfying
the conditions of 3.2.2. It induces an Aut K-equivariant isomorphism
o ¢ Arg(K) — 3¢(K) where ALy (K) is the algebra Ay from 3.7.3
corresponding to A = Ar (O). Recall that A is the coordinate ring
of the ind-scheme of horizontal sections of Spec Ay:, Y’ := Spec K. If
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A = Ary(O) then Spec Ay’ is the scheme of jets of Lg-opers on Y’ and
its horizontal sections are “g-opers on Y’ (cf. 3.3.3). So ALy(K) is the
coordinate ring of OpL,(K) := the ind-scheme of Lg-opers on Spec K. It is
a Poisson algebra with respect to the Gelfand - Dikii bracket (we remind its
definition in 3.7.14). The Gelfand - Dikii bracket depends on the choice of a
non-degenerate invariant bilinear form on “g. We define it to be dual to the
form (18) on g (i.e., its restriction to h* = “h C Lg is dual to the restriction
of (18) to h).

By 3.7.5 and 3.7.7 we have a canonical isomorphism 34(K) — 3, s0 ¢k

can be considered as an Aut K-equivariant isomorphism
(113) ALy(K) = 3.
3 is a Poisson algebra with respect to the Hayashi bracket (see 3.6.2).

3.7.13. Theorem. [FF92]

There is an isomorphism
(114) 00 Arg(0) = 34(0)

satisfying the conditions of 3.2.2 and such that the corresponding isomor-
phism (113) is compatible with the Poisson structures.

We will show (see 3.7.16) that an isomorphism (114) with the properties
mentioned in the theorem satisfies the conditions of 3.6.7. So it is unique

(see the Remark from 3.6.7).

Remark. As explained in 3.6.12, one can associate a Poisson bracket on 3
to any invariant bilinear form B on g (the bracket from 3.6.2 corresponds to
the form (18)). If B is non-degenerate one can consider the dual form on “g
and the corresponding Gelfand - Dikii bracket on AL (K'). The isomorphism
(113) corresponding to (114) is compatible with these Poisson brackets.

3.7.14. Let us recall the definition of the Gelfand - Dikii bracket from
[DS85]. This is a Poisson bracket on Opg(K) (i.e., a Poisson bracket on
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its coordinate ring A4(K')). It depends on the choice of a non-degenerate
invariant bilinear form (, ) on g.

Denote by g/gff the Kac—Moody central extension of g&® K corresponding
to (, ). As a vector space g/g[/( is (g ® K) @ C and the commutator in
g/(gf( is defined by the 2-cocycle Res(du,v), u,v € g ® K. The topological
dual space (gié_l/( )* is an ind-scheme. The algebra of regular functions on
(gTQS_I/( )* is a Poisson algebra with respect to the Kirillov bracket?? (i.e., the
unique continuous Poisson bracket such that the natural map from 9751/(
to the algebra of regular functions on (;8?7( )* is a Lie algebra morphism).

So (gié?( )* is a Poisson “manifold”. Denote by (gié?( )7 the space of

continuous linear functionals [ : g ® K — C such that the restriction of [ to

the center C C g ® K is the identity. (;8?7( )} is a Poisson submanifold of
(6 © K)".

We identify (m )7 with Conn := the ind-scheme of connections on
the trivial G-bundle on Spec K: to a connection V =d +1n, n € g ® wg,
we associate [ € (9/837()*{ such that for any u € g ® K C 978?7( one has
[(u) = Res(u,n). It is easy to check that the gauge action of g® K on Conn
corresponds to the coadjoint action of g® K on (9/87( )i, and one defines the
coadjoint action?* of G(K) on (g/g?()* so that its restriction to (9/657()”1‘
corresponds to the gauge action of G(K) on Conn. The action of G(K) on
the Poisson “manifold” (g/g?( )7 is not Hamiltonian in the literal sense, i.e.,
one cannot define the moment map (;51/( )7 — (g® K)*. However one can
define the moment map (g/gl/( ) — (g/gl/( )*: this is the identity map.

The point is that Opg(K) can be obtained from Conn = (g/gf()’f by
Hamiltonian reduction (such an interpretation of Opy(K) automatically
defines a Poisson bracket on Ag(K)). Fix a Borel subgroup B C Gag.
Let N be its unipotent radical, n := LieN. Since the restriction of

23 As explained in [We83] the “Kirillov bracket” was invented by Sophus Lie and then

rediscovered by several people including A.A. Kirillov.

24Tt is dual to the adjoint action of G(K) on ;Qb\?( defined by (19) (of course in (19)

¢ should be replaced by our bilinear form on g).
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the Kac-Moody cocycle to n ® K is trivial we have the obvious splitting
ne K — g/(gf( . It is B(K)-equivariant and this property characterizes it
uniquely. The action of N(K) on Conn is Hamiltonian: the moment map
w: Conn = (ﬁ()f — (n® K)* is induced by the above splitting. Let
Char* C (n ® K)* be the set of non-degenerate characters, i.e., the set of
Lie algebra morphisms [ : n ® K — C such that for each simple root « the
restriction of [ to g* ® K is nonzero. For every [ € Char* the action of N(K)
on ;1 1(1) is free and the quotient N(K)\ ~1(I) can be canonically identified
with Opg(K) (indeed, (1) is the space of connections V = d 4+ n € Conn
such that n = ) J, + ¢ where ¢ € b ® wg, I' is the set of simple roots, and
Jo = Jo(l) is aaieifced nonzero element of g=* ® wi). So Opy(K) is obtained
from Conn by Hamiltonian reduction over | with respect to the action of
N(K), whence we get a Poisson bracket on Opg(K). It is called the Gelfand
- Dikii bracket. It does not depend on [. Indeed, for [,I’ € Char* consider

the isomorphism
(115) N(E)\ p=H(1) = NE)\ p~ (V)

that comes from the identification of both sides of (115) with Opg(K). The
(co) adjoint action of H(K) on Conn = (g/g?( )7 preserves the relevant
structures (i.e., the Poisson bracket on Conn, the action of N(K) on Conn,
and the moment map p : Conn — (n® K)*). There is a unique h € H(K)
that transforms [ to I’ and (115) is induced by the action of this h. So (115)
is a Poisson map.

Remarks

(i) If the bilinear form (, ) on g is multiplied by ¢ € C* then the Poisson
bracket on Opg(K) is multiplied by ¢~

(ii) The Gelfand - Dikii bracket defined above is the “second Gelfand -
Dikii bracket”. The definition of the first one and an explanation of

the relation with the original works by Gelfand - Dikii ([GD76], [GD78])



HITCHIN’S INTEGRABLE SYSTEM 109

can be found in [DS85] (see Sections 2.3, 3.6, 3.7, 6.5, and 8 from loc.
cit).

3.7.15. Let § € Opy(K), ie., § = (§p,V) where §p is a B-bundle on
Spec K and V is a connection on the corresponding G-bundle satisfying
the conditions of 3.1.3 (here G is the adjoint group corresponding to g
and B C G is the Borel subgroup). We are going to describe the tangent
space T3Opy(K) and the cotangent space T3Opg(K). Then we will write
an explicit formula for {¢, ¥ }(F), ¢, ¥ € Ag(K).

Remark. Of course §p is always trivial, so we could consider § as a
connection V in the trivial G-bundle (i.e., V = d + ¢, ¢ € g ® wg) modulo
gauge transformations with respect to B.

To describe TzOpg(K) we must study infinitesimal deformations of
§ = (8B,V). Since Fp cannot be deformed all of them come from
infinitesimal deformations of V, which have the form V(e) = V + egq,
q € H(Spec K, ggl ® wr) (see 3.1.1 for the definition of g—1; ggl = ggPl’ is
the §p-twist of g=!). Taking in account the infinitesimal automorphisms of

$B we get:

(116) T50p4(K) = H°(Spec K, Coker(V : bz — ggl Qwk)) -
Here is a more convenient description of the tangent space:

(117) T50p4(K) = Coker(V : né{ — b? ® wk)

where ng := H%(Spec K, ng), bg := H%(Spec K, bz) (the natural map from
the r.h.s. of (117) to the r.h.s. of (116) is an isomorphism). Using the
invariant scalar product ( , ) on g we identify b*, n* with g/n, g/b and get

the following description of the cotangent space:
(118) T;Opg(K) = {u € g5 |V(u) € bf @ wi}/nk .
Here is an explicit formula for the Gelfand - Dikii bracket:

(119) {0, V}(S) = Res(V(dgp), dgt),  ¢,1 € Ag(K).
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In this formula the differentials dz¢ and dgzi are considered as elements of

the r.h.s. of (118).

3.7.16. Theorem. 2°

(i) Set I := Ker(Ag(K) — A4(O)). Then {I,I} C I and therefore I/I? is
a Lie algebroid over A4(O).
(ii) There is an Aut O-equivariant topological isomorphism of Lie alge-

broids
(120) I/1* =5 a4

(see 3.5.11, 3.5.15 for the definition of ag).

(In this theorem I? denotes the closure of the subspace generated by ab,

acl, bel).

Theorem 3.6.7 follows from 3.7.13 and 3.7.16.

Remark. The isomorphism (120) is unique (see 3.5.13 or 3.5.14).

3.7.17. Let us prove Theorem 3.7.16. We keep the notation of 3.7.15. Take
§ € Opg(O). Here is a description of T5Opy(O) similar to (117):

(121) T50p4(0O) = Coker(V : ng — bg ® wo)

where ng := HY(Spec O, ng). The fiber of I/I? over § is the conormal space
T?-(’)pg(O) C T30py(K). According to (121) it has the following description
in terms of (118):

(122) T3 Opg(O) = {u € g§| V(u) € b§ @ wo}/n§ .

Now it is clear that {I,1} C I: if p,¢ € I, § € Opgy(O) then dzy and
dz1 belong to the r.h.s. of (122) and therefore the r.h.s. of (119) equals 0.

The map
(123) I/1* — Der A4(O),

25Inspired by [Phys]
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which is a part of the algebroid structure on I/I%, is defined by ¢ + Oy,
Op() == {p, ¥}, ¢ € I, ¢ € Ag(K)/I = Ag(O). So according to (119) the

map

(124) T3 Opg(O) — T5O0pg(O0)

induced by (123) is the operator

(125) Vi {u€gf|V(u) € b @wo}t/n§ — (b ®wo)/V(ng).

The algebroid structure on I/I? induces a Lie algebra structure on the
kernel agz of the map (124). On the other hand, ag is the kernel of
(125), ie., az = {u € gg\V(u) = 0}/{u € ng\V(u) = 0}. Since
{u e ng| V(u) =0} = 0 we have

(126) ag ={u € gg\ V(u) = 0}.

The r.h.s. of (126) is a Lie subalgebra of gg.

Lemma. The Lie algebra structure on ag that comes from the algebroid

structure on I/I? coincides with the one induced by (126).

Proof. It suffices to show that if @1, g2 € Ag(K) and dgp; € ag then

(127) dz{e1, w2} = [dzp1, dzp2]

(in the r.h.s. of (127) dzy; are considered as elements of gg via (126)).
Consider a deformation () of §, €2 = 0. Write § as (§p, V). Without loss
of generality we can assume that §(¢) = (Fp,V +€q), q € b? ® wg. Write
d3(e)pi as dgp; + ;. Then

{e1,902}1(3(e)) = Res((V + ead q)(dgp1 + ep), dgip2 + epz) =

e Res([q, dgp1], dgp2) = € Res(q, [dgp1, dgp2))

(we have used that V(dgzp;) = 0). The equality (127) follows. O
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According to the lemma the kernel az of the map (124) coincides as a Lie
algebra with (guniv)g, i-e., the fiber at § of the Lie algebra gyniv from 3.5.11.
The map (124)=(125) is surjective because V : gg — g? ® wo is surjective.
It is easy to show that (121) and (122) are homeomorphisms and that the
map (124) is open.

In a similar way one shows that the morphism (123) is surjective and
open, and its kernel can be canonically identified with gyniv equipped with
the discrete topology (the identification induces the above isomorphism
ag — (guniv)g for every § € Opgy(0)). Lemma 3.5.12 yields a continuous
Lie algebroid morphism f : I/I? — a4 such that the diagram

0 — Guniv.  — I/I2 — DerAg(O) — 0

idl fl lid

0 — —  dg — Der440) — 0

Yuniv

is commutative. Since the rows of the diagram are exact in the topological

sense, f is a topological isomorphism. Clearly f is Aut O-equivariant.
3.8. Singularities of opers.

3.8.1. Let U be an open dense subset of our curve X. We are going to
represent the ind-scheme Opy(U) as a union of certain closed subschemes
Opg.p(X) where D runs through the set of finite subschemes of X such that
DNU =0.

According to 3.1.9 we have a canonical isomorphism @g(U ) — Opgy(U)
where @g(U ) is the T'(U, V. )-torsor induced from the T'(U,w$%?)-torsor
Op,(U) by a certain embedding T'(U,w$?) C T'(U, Viy ). The definition of
this embedding and of V' = Vj; can be found in 3.1.9. Let us remind that V' is
a vector space equipped with a G,-action (i.e., a grading) and V[, denotes
the twist of V' by the G,,-torsor wx. We have dim V' = r := rank g and the
degrees of the graded components of V' are equal to the degrees di,... ,d,

of “basic” invariant polynomials on g.
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If D is a finite subscheme of X one has a canonical embedding V,,, —
Vix(p)- Denote by @gD(X) the T'(X,V,(py)-torsor induced by the
I'(X, Vi, )-torsor @g(X). Clearly @gD(X) is a closed subscheme of
@g(X \ D). Denote by Opg p(X) the image of @g,D(X) in Opg(X \ D).
If D C D' then Opy p(X) C Opgp/(X) . For any open dense U C X we
have Opy(U) = | Opgp(X).

DNU=0

In 3.8.23 we will give an “intrinsic” description of Opg p(X), which does

not use the isomorphism @g = Opg. The local version of this description

is given in 3.8.7 — 3.8.10.
3.8.2. Now we can formulate the answer to the problem from 2.8.6:
(128) NA(G) = Oprga(X).

NA(G) is defined as a subscheme of an ind-scheme N, (G), which is
canonically identified with Op. (X \A) via the Feigin - Frenkel isomorphism.
(128) is an equality of subschemes of Op.y(X \ A).

We will not prove (128). A hint will be given in 3.8.6.

3.8.3.  The definition of Opy p(X) from 3.8.1 makes sense in the following
local situation: X = SpecO, O := C[[t]], D = SpecO/t"O. In this case
we write Opg,(O) instead of Opg p(X). Opgn(O) is a closed subscheme
of the ind-scheme Opy(K). Of course Opgo(O) = Opg(O), Opgn(O) C
Opgn+1(0), and Opg(K) is the inductive limit of Opg,(O).

According to 3.7.12 Ag4(K) is the algebra of regular functions on Opy(K).
Denote by I,, the ideal of Ag(K) corresponding to Opg,(0) C Opg(K).
Clearly I, D I,4+1 and Iy is the ideal I from 3.7.16 (i). The ideals I,, form
a base of neighbourhoods of 0 in A4(K).

3.8.4. Here is an explicit description of Ag(K) and I,. We use the
notation of 3.5.6, so g-opers on Spec K are in one-to-one correspondence
with operators (64) such that u;j(t) € C((t)). Write u;(t) as > u;xt". Then
Ag(K) = C[[...uj-1,0j0, Uj1,-..] (We use notation (98)). Tlﬁe ideal I,, is
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topologically generated by w;;, K < —d;n. The u;j from 3.5.6 are the images
of 1wy, in Ag(O) = Ag(K)/I.
It is easy to describe the action of Der K on Ag(K). In particular

(129) Loajk = (dj + k)ajk .

Just as in the global situation (see 3.1.12 — 3.1.14) the coordinate ring
Ag(K) of Opg(K) carries a canonical filtration. Its i-th term consists of those
“polynomials” in 1, whose weighted degree is < 4, it being understood that

the weight of u;y, is d;.

3.8.5. Proposition. The ideal I, C A4(K) is topologically generated by the

spaces A™

m.om < i(1 —n), where A" is the set of elements a from the i-th

term of the filtration of the Ay(K) such that Loa = ma. O
The isomorphism Azy(K) — 3 (see (113)) preserves the filtrations and

is Aut K-equivariant. So Proposition 3.8.5 implies the following statement.

3.8.6. Proposition. The Feigin - Frenkel isomorphism Az ,(K) — 3 maps
I, C ALy(K) onto the ideal I, from 3.7.9.
This is one of the ingredients of the proof of (128).

3.8.7.  We are going to describe Opg,,(O) in “natural” terms (without using
the isomorphism (43)). Denote by g* the locally closed reduced subscheme
of g consisting of all a € g such that for positive roots o one has a_, = 0
if a is non-simple, a_, # 0 if « is simple (a_4 is the component of a from
the root subspace g=®). Then for any C-algebra R the set g™ (R) consists of
a € g ® R such that a_, = 0 for each non-simple o > 0 and a_, generates
the R-module g~ ® R for each simple a.

Recall that a g-oper over Spec K is a B(K)-conjugacy class of operators
% +q(t), g € g7 (K). Here B is the Borel subgroup of the adjoint group G

corresponding to g.
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3.8.8. Definition. A (< n)-singular g-oper on Spec O is a B(O)-conjugacy
class of operators % +t "q(t), ¢ € g7 (0).
Remarks
(i) The action of B(O) on the set of operators % +t7"q(t), ¢ € g+ (0), is
free. Indeed, the action of B(K) on {Z + q(t)|q € g*(K)} is free (see
3.1.4).

(ii) For n = 0 one obtains the usual notion of g-oper on Spec O.

3.8.9. Proposition. The map {(< n)-singular g-opers on Spec O} — Opq(K)

is injective. Its image equals Opg,(O).

Proof. We use the notation of 3.5.6. For every vi,...,v, € CJ[t]] the
operator

d .
(130) E—i—t (i(f)+vi(t)er + ... +vp(t)ey)

defines a (< n)-singular g-oper on SpecO. It is easy to show that this
is a bijection between operators (130) and (< n)-singular g-opers on
Spec O. Now let us transform (130) to the “canonical form” (64) by B(K)-
conjugation. Conjugating (130) by ¢t~ we obtain

d
(131) - Tilh)+ npt ™t 4+ "y (Hey . T (Dey

To get rid of npt~! we conjugate (131) by exp(—ne;/2t) and obtain the
operator (64) with

wj(t) =t "%y;(t) for j>1,

uy (t) = 7"y (1) + n(n — 2) /4>, dy =2.
Clearly v; € C[[t]] if and only if u; € t "% CJ[[t]]. O

3.8.10. If points of Opy,(O) are considered as (< n)-singular g-opers on
Spec O then the canonical embedding Opg,(0) — Opgni1(0) maps the
B(O)-conjugacy class of % +t7"q(t), ¢ € g7 (0), to the B(O)-conjugacy
class of tP(<L + ¢ "q(t))t 7 (it is well-defined because t* B(O)t~? C B(0)).
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3.8.11. Denote by Inv(g) the algebra of G-invariant polynomials on g.
There is a canonical morphism g — SpecInv(g) = W \ h where W is the
Weyl group.

Suppose one has a (< 1)-singular g-oper on Spec O, i.e., a B(O)-conjugacy
class of 4 +¢71¢(t), ¢ € g*(0). The image of ¢(0) € g in SpecInv(g) is

called the residue of the oper. So we have defined the residue map
(132) Res : Opg1(0) — SpecInv(g) =W\ h.

It is surjective. Therefore it induces an embedding

(133) Inv(g) — Ag(K)/ I

(recall that Ag(K')/I; is the coordinate ring of Opg1(0); see 3.8.3).

3.8.12. Proposition. Res(Opg(O)) C W\ h consists of a single point, which
is the image of —p € b.

Remark. We prefer to forget that —p and p have the same image in W'\ b.

Proof. We must compute the composition of the map Opg(O) — Opg1(0)
described in 3.8.10 and the map (132). If g(t) € g*(O) then tP(£+q(t))tF =
% + %3 +{something regular} where a belongs to the sum of the root spaces
corresponding to simple negative roots. Now a — p and —p have the same

image in W'\ b. O

3.8.13. Proposition. Let f € Ag(K)/Ii, ie., f is a regular function on

Opg,1(0). Then the following conditions are equivalent:

(i) f € Inv(g), where Inv(g) is identified with its image by (133);
(ii) f is Aut® O-invariant;

(iii) Lof = 0.

Proof. Clearly (i)=-(ii)=-(iii). Let us deduce (i) from (iii). Consider a
(< 1)-singular g-oper on SpecO. This is the B(O)-conjugacy class of a
connection % +t71q(t), g € g7(O). If t is replaced by At this connection is
replaced by % +t71g(\t). Since Lof = 0 the value of f on the connection
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% +t~1g(\t) does not depend on A, so it depends only on ¢(0) € g* (because
/l\in%q()\t) = ¢(0)). It remains to use the fact that a B-invariant regular
function on g* extends to a G-invariant polynomial on g (see Theorem 0.10

from [Ko63]). O

3.8.14. Remark. According to 3.8.4 the algebra Ay(K)/I; is freely generated
by wjk, k > —d;, where Uy, € Ag(K)/I; is the image of u;, € Ag(K).
By 3.8.13 and (129) Inv(g) C Ag(K)/I1 is generated by v; = Uj_g,.
The isomorphism SpecC[v1,... ,v,] — SpecInv(g) is the composition

SpecClvy, ... ,v;] — g — SpecInv(g) where the first map equals i(f) —
p+vier + ...+ v.e, (we use the notation of 3.5.6).

3.8.15. We are going to prove Theorem 3.6.11. In 3.8.16 — 3.8.17 we
will formulate a property of the Feigin - Frenkel isomorphism (113). This
property reduces Theorem 3.6.11 to a certain statement (see 3.8.19), which
involves only opers and the Gelfand - Dikii bracket. This statement will be

proved in 3.8.20 — 3.8.22.

3.8.16. We will use the notation of 3.5.17. Besides, if Der O acts on a vector
space V we set VO := {v € V|Lov = 0}.

As explained in 3.6.9, the map 7 from 3.6.8 induces a morphism
(139 (3/3-3°=(3/3-3")==3/(3-3"n3*") ~ C
where C' is the center of Ug. Now (113) induces an isomorphism
(135) (3/3-3°)° = (Arg(K)/1n)°

because by 3.8.5 It = Ary(K) - Ary(K)<?. By 3.8.13 the r.h.s. of (135)
equals Inv(%g). So (134) and (135) yield a morphism

(136) Inv(fg) — C.

Denote by Inv(h*) the algebra of W-invariant polynomials on h*. Since

Lh = b* there is a canonical isomorphism Inv(¥g) — Inv(h*). We also have
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the Harish-Chandra isomorphism C' — Inv(h*). So (136) can be considered

as a map
(137) Inv(h*) — Inv(h*).

3.8.17. Theorem. (E. Frenkel, private communication)
The morphism (137) maps f € Inv(h*) to f~ where f~ () = f(—N),
Aebr. O

3.8.18. Using 3.8.17 we can replace the mysterious lower left corner of
diagram (84) by its oper analog. Diagram (143) below is obtained essentially
this way. Let us define the lower arrow of (143), which is the oper analog of
the map (83) constructed in 3.6.9 — 3.6.10.

According to 3.8.5

(138) I = Ag(K) - Ag(K)<".
By 3.8.13 we have a canonical isomorphism
(139) (Ag(K)/11)° — Inv(g).

For h € b denote by my, the maximal ideal of Inv(g) consisting of polynomials

vanishing at h. Set m :=m_;. By 3.8.12 the isomorphism (139) induces
(140) (I/1)° = m.
Now we obtain
(141) (I/(I* + I)° =5 m/m?
(to get (141) from (140) we use that
(I (I +1-17° C (I°)? + Ag(K) - Ag(K)<" = (I°)? + I ;

see (138)).

For a regular h € h we identify mh/m,zl with bh* by assigning to a W-
invariant polynomial on b its differential at h. In particular for m = m_;
we have m/m? = h* (by the way, if we wrote m as m; we would obtain a

different isomorphism m/m? -~~~ p*).
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Finally, using (138) we rewrite the L.h.s. of (141) in terms of I/I? and get

an isomorphism
(142) (I/1%)=0/(Ag(0) - (I/T?)<" 0 (1/17)=°) = p*.

3.8.19. Proposition. The diagram

(ag)="/(44(0) - a5® N (ag)=?) —

N}

(143) ! !

(I/1%)=0/(Ag(0) - (I/T)<" N (I/T*)=) — b

commutes. Here the lower arrow is the isomorphism (142), the upper one
is the isomorphism (78), the left one is induced by the isomorphism (120)
(which comes from the Gelfand - Dikii bracket on Ag(K)), and the right one
is induced by the invariant scalar product on g used in the definition of the
Gelfand - Dikii bracket.

The proposition will be proved in 3.8.20 — 3.8.22.

Theorem 3.6.11 follows from 3.8.17 and 3.8.19. The commutativity of
(143) implies the anticommutativity of (84) because the following diagram

is anticommutative:

ms/(mp)? == m_p/(m_p)?

h*
Here the upper arrow is induced by the map f +— f~ from 3.8.17.

3.8.20. We are going to formulate a lemma used in the proof of Proposi-

tion 3.8.19. Consider the composition
(144)  I/I? = I/(I* + 1) = ag/A4(0) - %fo = ag/0n = Guniv/Muniv -

Here the second arrow comes from (120) and (138); a, and nyniy were
defined in 3.5.16, ag was defined in 3.5.11; the equality a, = A4(O) - a;o
was proved in 3.5.18. The fiber of I/I? over § = (Fp, V) € Opy(O) equals

{ue gg\V(u) c bg ® wo}/ng (see (122)) and the fiber of guniyv/Muniv OVer §
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equals (gg/ng)o :=the fiber of gz/ng at the origin 0 € Spec O. Consider the

maps

o, : {u € 98|V (u) € b§ ®wo}/ng — (a3/n3)o
where ¢ is induced by (144) and v is evaluation at 0.

3.8.21. Lemma. ¢ = .

Proof. 1t follows from 3.7.17 that the restrictions of ¢ and ¢ to az := {u €
g%V(u) = 0} are equal. So it suffices to show that Ker ¢ C Ker. Clearly
Keryp = Té@pg,l(O) := the conormal space to Opy1(O) at §. For any
q € bg the oper §, = (§,V +q- %) is (< 1)-singular. So the image
of bg ® t~'wo in the r.h.s. of (117) is contained in the tangent space
T50p4,1(0). Therefore Té@pgyl(O) C Ker. O

3.8.22. Now let us prove 3.8.19. Since the Lh.s. of (142) equals the Lh.s.
of (141) we can reformulate 3.8.19 as follows.

Let f € Inv(g), f(—p) = 0. Consider f as an element of A4(K)/I; (see
(133)). By 3.8.12 f € I/I;. The image of f in I/(I?+ I1) can be considered
as an element v € gupiv/Muniv (see (144)). On the other hand, let A € h* be
the differential at —p of the restriction of f € Inv(g) to h. To prove 3.8.19

we must show that v equals the image of A under the composition

b* ;) h C h & Ag(o) = buniv/nuniv C guniv/nuniv .

By 3.8.21 this is equivalent to the following statement: let § = (§p,V) €
Opg(O)v qec bO’ Ssq = (SB,V + €q%), then

(143) @ F(Res(Feq))le=0 = Man(0))

where gy (t) € b[[t] is the image of ¢ in bg/ng =bh®O. Just as in the proof
of 3.8.12 one shows that Res(§:4) equals the image of —p + gy (0) in W\ b.
So (145) is clear.



HITCHIN’S INTEGRABLE SYSTEM 121

3.8.23. In this subsection (which can certainly be skipped by the reader)
we give an “intrinsic” description of the scheme Opg p(X) from 3.8.1. It is
obtained by a straightforward “globalization” of 3.8.7 — 3.8.10.

Denote by G the adjoint group corresponding to g. Suppose we are in
the situation of 3.1.2. So we have a B-bundle §g on X, the induced G-
bundle F¢, and the gz ® wx-torsor Conn(F). Let D be a finite subscheme
of X. Denote by Connp(§¢a) the gz ® wx (D)-torsor induced by Conn(§q);
so sections of Connp(F¢) are connections with (< D)-singularities. Just
as in 3.1.2 one defines ¢ : Connp(Fg) — (9/b)z ® wx (D). The notion of
(< D)-singular g-oper on X is defined as follows: in Definition 3.1.3 replace
Conn by Connp and wx by wx (D).

If X is complete then (< D)-singular g-opers on X form a scheme. Just as
in 3.8.9 one shows that the natural morphism from this scheme to Opy(X\ D)
is a closed embedding and its image equals Opg p(X). So one can consider
Opg,p(X) as the moduli scheme of (< D)-singular g-opers on X.

If D C D' then Opygp(X) C Opgp/(X), so we should have a natural
way to construct a (< D')-singular g-oper (§'5, V') from a (< D)-singular g-
oper (§p, V). Of course (§’5, V') should be equipped with an isomorphism
a: (§5 V)xa — s V)lx\a where A C X is the finite subscheme
such that D' = D + A if D, D', A are considered as effective divisors. The
connection V' is reconstructed from V and «, while (§'5, @) is defined by
the following property (cf. 3.8.10): if x € A, f is a local equation of A at z
and s is a local section of §p at x then there is a local section s’ of 533 at x
such that a(s’") = A(f)s where X : G,, — H is the morphism corresponding
to p.
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4. Pfaffians and all that

4.0. Introduction.

4.0.1. Consider the “normalized” canonical bundle

(146) w]ﬁgunG '= WBung ® W

where wy is the fiber of wpun, over the point of Bung corresponding to the
trivial G-bundle on X. In this section we will associate to an “G-oper § the

invertible sheaf Az on Bung mentioned in 0.2(d). Az will be equipped with
#

BunG)®” for some n # 0. This isomorphism

an isomorphism )\?2" = (w

induces the twisted D-module structure on Az required in 0.2(d).
According to formula (57) from 3.4.3 Oprg(X) = Opry(X) x Z torsg(X)

where Z is the center of “G. Actually Az depends only on the image of §

in Ztorsg(X). So our goal is to construct a canonical functor
(147) A Ztorsg(X) — peo torsg(Bung)

where pioo torsg(Bung) is the groupoid of line bundles A on Bung equipped

with an isomorphism A®?" -~ (w]ﬂ?}unc)®” for some n # 0.

4.0.2. The construction of (147) is quite simple if G is simply connected.
In this case Z is trivial, so one just has to construct an object of
oo torsg(Bung). Since G is simply connected Bung is connected and simply
connected (interpret a G-bundle on X as a G-bundle on the C'* manifold
corresponding to X equipped with a O-connection). So the problem is to
show the existence of a square root of w%una (then peo torsg(Bung) has a
unique object whose fiber over the point of Bung corresponding to the trivial
G-bundle is trivialized). To solve this problem we use the notion of Pfaffian.

To any vector bundle @ equipped with a non-degenerate symmetric form
Q®Q — wy Laszlo and Sorger associate in [La-So] its Pfaffian Pf(Q), which
is a canonical square root of det RI'(X, Q). In 4.2 we give another definition

of Pfaffian presumably equivalent to the one from [La-So].
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Fix £ € w/?(X) (i.e., £ is a square root of wy). Then the line bundle on

Bung whose fiber at F € Bung equals
(148) Pf(gr © L) @ Pf(g® £)®

is a square root of w%unc (see 4.3.1 for details).

So to understand the case where G is simply connected it is enough to
look through 4.2 and 4.3.1. In the general case the construction of (147) is
more complicated. The main point is that the square root of w%unG defined

by (148) depends on £ € w'/?(X).

4.0.3. Here is an outline of the construction of (148) for any semisimple G.
As explained in 3.4.6 Ztorsg(X) is a Torsor over the Picard category

Z tors(X) and o torsg(Bung) is a Torsor over the Picard category

(149) oo tors(Bung) := lim y,, tors(Bung)
n

The functor (147) we are going to construct is ¢-affine in the sense of 3.4.6
for a certain Picard functor ¢ : Z tors(X) — poo tors(Bung). We define ¢
in 4.1. The Torsor Z torsg(X) is induced from w!'/?(X) via a certain Picard
functor po tors(X) — Ztors(X) (see 3.4.6). So to construct A it is enough
to construct an #-affine functor X' : w'/2(X) — pioo torsg(X) where ¢ is the
composition pg tors(X) — Zt01rs(X)i>,uOo tors(Bung). We define X' by
L +— N, where X is the line bundle on Bung whose fiber at F € Bung
equals (148). The fact that A is ¢-affine is deduced in 4.4 from 4.3.10,
which is a general statement on SO,-bundles?®. Actually in subsections 4.2

and 4.3 devoted to Pfaffians the group G does not appear at all.

4.0.4. Each line bundle on Bung constructed in this section is equipped
with the following extra structure: for every x € X a central extension of
G(K;) acts on its pullback to the scheme Bung , from 2.3.1. This structure
is used in 4.3. We will also need it in Chapter 5.

26Tn fact 4.3.10 is a refinement of Proposition 5.2 from [BLaSo].
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4.1. peo-torsors on Bung.

4.1.1. Let G be a connected affine algebraic group, II a finite abelian
group, 0 — II(1) — G — G — 0 an extension of G. Our goal is to
construct a canonical Picard functor £ : TIY tors(X) — s tors(Bung) where

MV := Hom(I1, fioo)-

Remark. If G is semisimple and G is the universal covering of G then
II = m1(G) and IV is canonically isomorphic to the center Z of “G (the
isomorphism is induced by the duality between the Cartan tori of G and
L@). So in this case £ is a Picard functor Z tors(X) — po tors(Bung), as

promised in 4.0.3.

We construct £ in 4.1.2-4.1.4. We “explain” the construction in 4.1.5
and slightly reformulate it in 4.1.6. In 4.1.7-4.1.9 the action of a central
extension of G(K;) is considered. In 4.1.10-4.1.11 we give a description
of the fundamental groupoid of Bung, which clarifies the construction of

torsors on Bung. The reader can skip 4.1.5 and 4.1.10—4.1.11.

4.1.2. For F € Bung denote by F the II(1)-gerbe on X of G-liftings of
F. Tts class ¢(F) is the image of cl(F) by the boundary map H'(X,G) —
H? (X, H(l)) = II. For a finite non-empty S C X the gerbe ]}X\S is neutral.
Therefore | F(X\S)| (:= the set of isomorphism classes of objects of F(X\S))
is a non-empty H' (X \ S,II(1))-torsor. Denote it by ¢s . When F varies
¢s,7 become fibers of an H' (X \ S,II(1))-torsor ¢g over Bung.

4.1.3. For any z € X the set |F(SpecO,)| has a single element. We use it
to trivialize the II-torsor |F(Spec K,)| (note that IT = H' (Spec K5, 11(1))).
Thus the restriction to Spec K, s € S, defines a Resg-affine map Res, 7 :
¢s,7 — II where Res, : H' (X \ S,II(1)) — II is the residue at s. For ¢ € II
set IS := {mg = (ms) : > ms =c} C II®. The map Resgr := (Res;r) :

Os.F — I1° has image Hf(f).
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4.1.4. Recall that IIV is the group dual to II, so we have a non-degenerate
pairing () : IT x TV — pieo -

Let € be a ITV-torsor on X. Set g := [I,c5&s = the set of trivializations
of £ at S; this is a (ITY)®-torsor. For any e € £s we have the class
cl(€,e) € HY(X \ S,I1V). Denote by lse r a fico-torsor equipped with a

map

(150) (s )e:¢sFrxEs—LlserF

such that for ¢ € ¢gr, e = (e5) € Eg, h € H' (X \ S, II(1)), x = (xs) €
(ITV)* one has

(p+ h,e)g = (h,cl(E,e))p(p,e)e
(151)

(o, xe)e = (Ress v, X) (@, ).

Here (1, )p : H'(X \ S,II(1)) x HY(X \ S,1IY) — p is the Poincaré
pairing and (Resg ¢, x) := [[,cg(Ress ¢, Xs) € too. Such (Lse 7, ()e)) exists
and is unique. If S’ O S then we have obvious maps ¢g r — ¢g/ 7, Es/ — Es,
and there is a unique identification of pi-torsors £g ¢ 7 = £g/ ¢ 7 that makes
these maps mutually adjoint for (, );. Thus our peo-torsor is independent
of S and we denote it simply f¢ r.

When F varies {¢ r become fibers of a p-torsor ¢ over Bung. The

functor
(152) 0=0% .11 tors(X) — poo tors(Bung),

€ — lg, has an obvious structure of Picard functor. The corresponding
homomorphism of the automorphism groups IV — T'(Bung, fieo) is X +—
(¢ x)-

Remark. In fact £ is a functor ITY tors(X) — py, tors(Bung) where m is

the order of II. This follows from the construction or from the fact that

(152) is a Picard functor.
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4.1.5. For an abelian group A denote by Agerbes(X) the category
associated to the 2-category of A-gerbes on X (so Agerbes(X) is the
groupoid whose objects are A-gerbes on X and whose morphisms are 1-
morphisms up to 2-isomorphism). In 4.1.2-4.1.4 we have in fact constructed

a bi-Picard functor

(153) ITY tors(X) x II(1) gerbes(X) — fioo tors

where po tors denotes the category of poo-torsors over a point. In this
subsection (which can be skipped by the reader) we give a “scientific
interpretation” of this construction.

In §1.4.11 from [Del73] Deligne associates a Picard category to a complex
K of abelian groups such that K = 0 for i # 0, —1. We denote this Picard
category by P(K'). Its objects are elements of K and a morphism from
r € K% toy € K%is an element f € K~! such that df =y — 2.

In 4.1.4 we implicitly used the interpretation of II" tors(X) as P(Ky)
where K2 = H!(X\S,IIV) = the set of isomorphism classes of IIV-torsors
on X trivialized over S, Kgl = H°(S,11V). In 4.1.3 we implicitly used the
interpretation of I1(1) gerbes(X) as P(Lg) where LY = H2(X,II(1)) = I1%,
Lg' = HY(X\S,II(1)) (LY parametrizes TI(1)-gerbes on X with a fixed
object over X\S). The construction of the bi-Picard functor (153) given in
4.1.4 uses only the canonical pairing Kg X Lg — poo[1].

For S’ D S we have canonical quasi-isomorphisms Ky — Kj and
Ly — L. The corresponding equivalences P(Kg,) — P(Ky) and P(Ly) —
P(Lg,) are compatible with our identifications of P(Kg) and P(Ky,) with
ITY tors(X) and also with the identifications of P(Ly) and P(Lg,) with
II(1) gerbes(X). The morphism Ly — L, is adjoint to Ky — Kg with
respect to the pairings Kg x Ly — pioo[1] and Ky, x Ly — pioo[1]. Therefore
(153) does not depend on S.

Remarks
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(i) Instead of Ky and Ly it would be more natural to use their images in
the derived category, i.e., (<1 RT'(X,IIV))[1] and (7>1 RT'(X,11(1)))[2].
However the usual derived category is not enough: according to
§61.4.13-1.4.14 from [Del73] the image of K in the derived category
only gives P(K") up to equivalence unique up to non-unique isomor-
phism. So one needs a refined version of the notion of derived category,
which probably cannot be found in the literature.

(ii) From the non-degeneracy of the pairing Kg x Ly — fiso[1] one can
easily deduce that (153) induces an equivalence between ITY tors(X)
and the category of Picard functors II(1) gerbes(X) — poo tors (this is
a particular case of the equivalence (1.4.18.1) from [Del73]).

4.1.6. The definition of f¢ from 4.1.4 can be reformulated as follows. Let
S C X be finite and non-empty. For a fixed e € £g we have the class ¢ =
cl(€,e) € HLY(X\S,11) and therefore a morphism )\, : H*(X\S,TI(1)) —
loo defined by Ac(h) = (h,c)p. Denote by l¢ . the A.-pushforward of the
HY(X\S,II(1))-torsor ¢g from 4.1.2. The torsors {g . for various e € Eg are
identified as follows.

Let & = e, x € (IIV)®. Then As(h)/Ac(h) = (Resg(h), x) where Resg is
the boundary morphism H'(X\S,II(1)) — HZ(X,II(1)) = II°. So g/l
is the pushforward of the ITS-torsor (Resg)«pgs via x : I° — fieo. The
map Resgr : ¢s7r — II° from 4.1.3 induces a canonical trivialization of
(Resg)«¢s and therefore a canonical isomorphism /¢ . = lg . So we can
identify /¢ . for various e € £g and obtain a ps-torsor on Bung, which does

not depend on e € £g. Clearly it does not depend on S. This is f¢.

4.1.7. Let S C X be a non-empty finite set, Og := [[ Oz, Kg := [] K»
where O, is the completed local ring of x and K, isx Elfs field of fra?cisons.
Denote by S the formal neighbourhood of S and by Bung s the moduli
scheme of G-bundles on X trivialized over S (in 2.3.1 we introduced Bung 4,

which corresponds to S = {z}). One defines an action of G(Kg) on Bung g
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extending the action of G(Og) by interpreting a G-bundle on X as a G-
bundle on X \ § with a trivialization of its pullback to Spec Kg (see 2.3.4
and 2.3.7).

Let £¢ be the pioo-torsor on Bung corresponding to a ITY-torsor € on X (see
4.1.4, 4.1.6). Denote by ég the inverse image of ¢ on Bung g. The action
of G(Og) on Bung g canonically lifts to its action on ég . We claim that a
trivialization of £ over S defines an action of G(Kg) on £2 extending the
above action of G(Og) and compatible with the action of G(Kg) on Bung g.
Indeed, once e € & is chosen ¢2 can be identified with Egy . = (Ae)« s where
¢s is the pullback of ¢g to Bung,s and A, was defined in 4.1.6. G(Ks) acts
on ¢g because ¢s,7 depends only on the restriction of F to X\ S. So G(Kg)
acts on Eg o

The isomorphism Kg’e — gﬁé induced by the isomorphism lg, — fg ¢
from 4.1.6 is not G(Kg)-equivariant. Indeed, if € = xe, x € (IIV)®, then
according to 4.1.6 Egé/fge is the pushforward of the II%-torsor (Res).¢g
via ¥ : II° — poo. The identification (Res).ps = Bungg xIT° from
4.1.6 becomes G(Kg)-equivariant if G(Kg) acts on ITI° via the boundary
morphism ¢ : G(Kg) — H'(Spec Kg,TI(1)) = I (we should check
the sign!ll). Therefore the trivial poo-torsor Egyé/ﬁge is equipped with a
nontrivial action of G(Kg): it acts by x¢ : G(Kg) — fico-

So to each e € Eg there corresponds an action of G(Kg) on <Z~>g, and if e
is replaced by xe, x € (ITV)® = Hom(IT%, s ), then the action is multiplied
by xp 1 G(Ks) = ico-

Remark. By the way, we have proved that the coboundary map ¢ :
G(Kg) — H'(Spec Kg,II(1)) = TI is locally constant?” (indeed, G(Kg)
acts on (Res)*gs as a group ind-scheme, so ¢ is a morphism of ind-
schemes, i.e., ¢ is locally constant. The proof can be reformulated as
follows. Without loss of generality we may assume that S consists of a

single point . The group ind-scheme G(K,) acts on Bung, (see 2.3.3 —

27See also 4.5.4.
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2.3.4), so it acts on mo(Bung,) = mo(Bung). One has the “first Chern
class” map c¢: mo(Bung) — II. It is easy to show that c(gu) = ¢(g)c(u) for
u € mo(Bung), g € G(K,) where ¢ : G(K,) — HY(K,,II(1)) = II is the
coboundary map. So ¢ is locally constant.

—_~—

4.1.8. Denote by G(Kg)¢ the group generated by po and elements (g, e),
g € G(Kg), e € Eg, with the defining relations

(9192,€) = (g1,€)(g2,€)
(g1,xe) = x(p(9)-{g,€), x € (I1Y) = Hom(II%, 1s0)
a(g,e> - <ga€>av Q€ oo

—_—

G(Kg)g is a central extension of G(Kg) by pieo. The extension is trivial: a
choice of e € Eg defines a splitting

—_—

(154) e G(Ks) = G(Ks)e, g+ (g,e).

—_~—

It follows from 4.1.7 that G(Kg)¢ acts on €2 so that e C G(Kg),g acts

in the obvious way and the action of G(Kg) on Eg corresponding to e € Eg

(see 4.1.7) comes from the splitting (154).

4.1.9. Consider the point of Bung g corresponding to the trivial G-bundle
on X with the obvious trivialization over S. Acting by G(Kg) on this
point one obtains a morphism f : G(Kg) — Bungg. Suppose that G is

semisimple. Then f induces an isomorphism.
(155) G(Ks)/G(As) — Bungg

where Ag := H%(X \ S,0x) (see Theorem 1.3 from [La-So] and its proof in
§3 of loc.cit). It is essential that G(Kg) and G(Ag) are considered as group
ind-schemes and G(Kg)/G(As) as an fppf quotient, so (155) is more than a

bijection between the sets of C-points. We also have an isomorphism

(156) G(0s) \ G(Ks)/G(As) —> Bung .
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It is easy to see that the po-torsors g and Ef defined in 4.1.4 and 4.1.7 can

be described as

(157) 6 = G(Ks)e/G(As)
(158) le = G(Os)\G(Kg)g/G(As)

where G(Kg)¢ is the central extension from 4.1.8. Here the embeddings

P

i: G(O) = G(Kg)e and j: G(Ag) — G(Kg)g are defined by

(159) Z(g) = <g,€>, 6685
(160) ilg) = (g,€)- (W(g),cl(€ e)p', e€&s

(we should check the sign!!!) where 9 is the boundary morphism G(Ag) —
HY(X\ S,TI(1)) and cl(€,e) € HY(X \ S,I1V) is the class of (£, ¢e) (the r.h.s.
of (159) and (160) do not depend on e).

Remark. The morphisms ¢ : G(Ks) — II° and v : G(Ag) —
H'(X \ S,TI(1)) induce a morphism

(161)  Bung = G(Os) \ G(Ks)/G(Ag) — I /H (X \ $,T1(1))

where the r.h.s. of (161) is understood as a quotient stack. Clearly (¢ is the
pullback of a certain fis-torsor on the stack IT°/H'(X \ S, TI(1)).

4.1.10. The reader can skip the remaining part of 4.1.

Let C be a groupoid. Denote by C the corresponding constant sheaf of
groupoids on the category of C-schemes equipped with the fppf topology. If
the automorphism groups of objects of C' are finite then C' is an algebraic
stack. By abuse of notation we will often write C' instead of C (e.g., if C'is

a set then C' = C x Spec C is usually identified with C).

Examples. 1) If C' has a single object and G is its automorphism group
then C is the classifying stack of G.

2) If C = P(K') (see 4.1.5) then C is the quotient stack of K" with

respect to the action of K~!. So according to 4.1.5 the r.h.s. of (161)

is the stack corresponding to the groupoid II(1) gerbes(X).
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3) If C = Agerbes(X) then C is the sheaf of groupoids associated to the
presheaf S — A gerbes(X x 5).

Consider the groupoid II(1) gerbes(X) as an algebraic stack. In 4.1.2 we

defined a canonical morphism
(162) ¢: Bung — II(1) gerbes(X)

that associates to a G-bundle F the II(1)-gerbe of G-liftings of F (by the
way, the morphism (161) defined for semisimple G coincides with ¢). ¢
is a refinement of the Chern class map ¢ : Bung — H?(X,II(1)) = II;
more precisely, ¢ is the composition of ¢ and the canonical morphism
II(1) gerbes(X) — H?(X,II(1)) = the set of isomorphism classes of
I1(1) gerbes(X).

The poo-torsors on Bung constructed in 4.1.4 come from po-torsors on
I1(1) gerbes(X). The following proposition shows that if G' is the universal
covering of G then any local system on Bung comes from a unique local

system on II(1) gerbes(X).

4.1.11. Proposition. Suppose that G is the universal covering of G (so
IT = m(G)). Then the morphism (162) induces an equivalence between
the fundamental groupoid of Bung and II(1) gerbes(X).

Let us sketch a transcendental proof (since it is transcendental we
will not distinguish between II and II(1)). Denote by X'P the C*
manifold corresponding to X; for a G-bundle F on X denote by Ft°P
the corresponding G-bundle on X*P. Consider the groupoid Bumg)p whose
objects are G-bundles on X*P and morphisms are isotopy classes of C'™
isomorphisms between G-bundles. It is easy to show that the natural functor
Bung? — I gerbes(X'P) = IIgerbes(X) is an equivalence. So we must
prove that for a G-bundle £ on X'*P the stack of G-bundles F on X equipped
with an isotopy class of isomorphisms F%*P -~ ¢ is non-empty, connected,

and simply connected. This is clear if a G-bundle on X is interpreted as a

G-bundle on X*P equipped with a d-connection.
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Remark. 1In 4.1.2 we defined the H(X\ S, I1(1))-torsor ¢p5 — Bung. If S =
{x} for some z € X then H'(X\S,1I(1)) = H'(X,1I(1)), s0 ¢g,;} — Bung is
a H'(X,II(1))-torsor. Proposition 4.1.11 can be reformulated as follows: if
G is the universal covering of G then the Chern class map (Bung) — ITis
bijective and the restriction of ¢,3; — Bung to each connected component
of Bung is a universal covering. This is really a reformulation because a

choice of x defines an equivalence.
(163) I1(1) gerbes(X) — II x H'(X,TI(1)) tors

(to a II(1)-gerbe on X one associates its class in H?(X,II(1)) = IT and the
H'(X,TI(1))-torsor of isomorphism classes of its objects over X \ {z}).

4.2. Pfaffians I. In this subsection we assume that for (Z/2Z)-graded
vector spaces A and B the identification of A ® B with B ® A is defined by
a®b— (—1)P@POp @ q where p(a) is the parity of a. Following [Kn-Mu] for
a vector space V of dimension n < oo we consider det V' as a (Z/2Z)-graded

space of degree n mod 2.

4.2.1. Let X be a smooth complete curve over C. An w-orthogonal bundle
on X is a vector bundle Q equipped with a non-degenerate symmetric pairing
O ® Q — wx. Denote by w-Ort the stack of w-orthogonal bundles on X.
There is a well known line bundle det RT' on w-Ort (its fiber over Q is
det RT'(X, Q)). Laszlo and Sorger [La-So] construct a (Z/27Z)-graded line
bundle on w-Ort (which they call the Pfaffian) and show that the tensor
square of the Pfaffian is det RI'. For our purposes it is more convenient to
use another definition of Pfaffian. Certainly it should be equivalent to the
one from [La-So], but we did not check this.

We will construct a line bundle Pf on w-Ort which we call the Pfaffian;
its fiber over an w-orthogonal bundle Q is denoted by Pf(Q). The action
of —1 € Aut Q on Pf(Q) defines a (Z/27Z)-grading on Pf. Since Pf is a line
bundle, “grading” just means that there is a locally constant p : (w-Ort) —

7./27 such that Pf(Q) has degree p(Q). Actually p(Q) = dim H°(Q) mod 2
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(the fact that dim H°(Q) mod 2 is locally constant was proved by M. Atiyah
and D. Mumford [At, Mu]).

For an w-orthogonal bundle Q@ denote by @~ the same bundle Q equipped
with the opposite pairing Q ® Q — wx. Set P{~(Q) := Pf(Q~). We will
define a canonical isomorphism Pf @ Pf~ —- det RI'. Define isomorphisms
fei : PEQ) <5 PH(Q) by fai = (pas)s where i = v—Tand p; : @ = Q-
is multiplication by ¢. Identifying Pf and Pf~ by means of fi; we obtain
isomorphisms c+; : Pf®2 = det RT such that (¢;)"'e_; : Pf(Q)®? =
Pf(Q)®? is multiplication by (—1)P(<).

Remarks

(i) If Q is an w-orthogonal bundle then by Serre’s duality H!(X, Q) =
(H°(X,Q))*, so det RI'(X, Q) = det H(X, Q)®2. The naive definition
would be Pf’(Q) := det H(X, Q), but this does not make sense for
families of Q’s because dim HY (X, Q) can jump.

(ii) Let Q be the orthogonal direct sum of Q; and Q. Then
det RT'(X, Q) = det RI'(X, Q1) ® det RI'(X, Q2). From the definitions
of Pf and Pf ® Pf~ = det RT it will be clear that there is a canonical
ismorphism Pf(Q) — Pf(Q;) ® Pf(Qs) and the diagram

Pf(Q) @ Pf(Q7) — Pf(Q1) ® Pf(Q)) ® Pf(Q2) ® Pf(Qy)

! !

~

det RT'(X,Q) =5 det RI(X, Q1) ® det RT(X, Qo)

~

is commutative. Therefore the isomorphisms cy; : Pf(Q)®?
det RT'(X, Q) are compatible with decompositions Q = Q1 ® Qo.

(iii) One can define cy : Pf(Q)®2 = det RT(X, Q) by ¢y = itP(Q%¢;
where p(Q)? is considered as an element of Z/4Z. Then ci does
not change if ¢ is replaced by —i. However ci+ do not seem to be
naturalobjects, e.g., they are not compatible with decompositions

Q= Q@ Q, (the “error” is (—1)P(QP(2)),
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(iv) The construction of Pf(Q) works if C is replaced by any field & such
that char k # 2. The case char k = 2 is discussed in 4.2.16.

4.2.2. A Lagrangian triple consists of an even-dimensional vector space
V' equipped with a non-degenerate bilinear symmetric form ( , ) and
Lagrangian (= maximal isotropic) subspaces Ly,L_ C V. If X and Q
are as in 4.2.1 and Q' C Q is a subsheaf such that H°(X, Q') = 0 and
S := Supp(Q/Q’) is finite then one associates to (Q, Q') a Lagrangian triple
(V; Ly, L_) as follows (cf. [Mu]):

(1) V:= HY(X,Q"/Q') where Q" := Hom(Q',wx) D Q;

(2) L, = HO(X,Q/Q) C V;

(3) L = HO(X, Q") C V"

(4) the bilinear form on V is induced by the natural pairing Q"/Q" ®

Q"/Q — (jswx\s)/wx and the “sum of residues” map HO(X, (Jewx\s)/wx) —
C where j is the embedding X\S — X. In this situation one can iden-
tify RT'(X, Q) with the complex

(164) 0—-L_—V/Ly—0

concentrated in degrees 0 and 1. In particular H%(X,Q) = L, NL_,
HY(X,Q) = V/(Ly + L_) and Serre’s pairing between HY(X, Q) =
L.NL_and HY(X,Q) = V/(Ly+ L_) is induced by the bilinear form
on V.

4.2.3. For a Lagrangian triple (V; Ly, L_) set
(165) det(V;Ly,L_):=det Ly ® det L_ ® (det V)*.

det(V;Ly,L_) is nothing but the determinant of the complex (164).
Formula (165) defines a line bundle det on the stack of Lagrangian triples. In
4.2.4 and 4.2.8 we will construct a Z/2Z-graded line bundle Pf on this stack
and a canonical isomorphism Pf® Pf~ — det where Pf~(V;L,,L_) :=
Pf(V7;Ly,L_) and V™ denotes V equipped with the form —(, ). The naive



HITCHIN’S INTEGRABLE SYSTEM 135

“definition” would be Pf*(V; Ly, L_) := det(LyNL_) or Pf*(V; Ly, L_)* :==
det((Ly+ NL_)*) =det(V/(L+ + L-)) (cf. Remark (i) from 4.2.1).

4.2.4. For a Lagrangian triple (V; L4, L_) define Pf(V; L4, L_) as follows.
Denote by Cl(V') the Clifford algebra equipped with the canonical (Z/2Z)-
grading (V' C Cl(V) is odd). Let M be an irreducible (Z/27Z)-graded C1(V)-
module (actually M is irreducible even without taking the grading into
account). M is defined uniquely up to tensoring by a 1-dimensional (Z/27Z)-
graded vector space. Set M;_ = M/L_M, M*+ := {m € M|Lym = 0}.
Then MY+ and Mj_ are 1-dimensional (Z/27Z)-graded spaces. We set

(166) Pf(V;Ly,L ) := M+ @ (M )*.
In particular we can take M = CI(V)/Cl(V)L,. Then M*+ = C, so
(167) Pf(V;Ly, L) =ClV)/(L--CY(V)+ ClV) - Ly).

Clearly (166) or (167) defines Pf as a (Z/2Z)-graded line bundle on the
stack of Lagrangian triples.?® The grading corresponds to the action of
—1eAut(V; Ly, L) on Pf(V; Ly, L_).

If V is the orthogonal direct sum of V; and V5 then CI(V) is the tensor
product of the superalgebras C1(V;) and C1(Vz). Therefore if (V1; L1 L)

and (V?; Li, L?) are Lagrangian triples one has a canonical isomorphism

(168)
PfV'e Vi Ll o3, Lt e L2) =Pf(VL LL, L) @ PE(VE LA, L2).

where @ denotes the orthogonal direct sum.
Pf(V; L4, L_) is even if and only if dim(Ly N L_) is even. This follows

from (168) and statement (i) of the following lemma.

28In other words, passing from individual Lagrangian triples to families is obvious. This
principle holds for all our discussion of Pfaffians (only in the infinite-dimensional setting

of 4.2.14 we explicitly consider families because this really needs some care).
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4.2.5. Lemma.

(i) Any Lagrangian triple (V'; L4, L_) can be represented as an orthogonal
direct sum of Lagrangian triples (Vl;L}F,Ll_) and (VZ;L?HLQ_) such
that L} N LY =0, L3 = L2.

(ii) Moreover, if a subspace A C L is fixed such that Ly = A @ (Ly N
L_) then one can choose the above decomposition (V;Li,L_) =
(VL LY LY) e (V2 L2, L?) so that L = A.

Proof

(i) Choose a subspace P C V such that V = (L4 + L_) @ P. Then set
V2= (LiNL)® P, V:= (V2L

(ii) Choose a subspace P C A+ such that A* = L, @ P (this implies that
V = (Ly+L_)®P because A+ /L, — V/(Ly+L_)is an isomorphism).

Then proceed as above. O

4.2.6. In this subsection (which can be skipped by the reader) we
construct a canonical isomorphism between Pf(V; Ly, L_) and the naive
Pt’(V; Ly, L_) from 4.2.3. Recall that Pf*(V; Ly, L_) := det(Ly N L_),
so PfY(V; Ly, L)* = det((Ly N L_)*) = det(V/(Ly + L_)), it being
understood that the pairing det W @ det W* — C, W := Ly N L_, is defined
by (e1 A...Nep)® (e A...Ae') — 1 where ey, ... e is a base of W and
el, ..., e" is the dual base of W* (this pairing is reasonable from the “super”
point of view; e.g., it is compatible with decompositions W = W @ Wa).

To define the isomorphism Pf(V; Ly, L_) — Pf*(V; Ly, L_) we use the
canonical filtration on C1(V') defined by

(169) Cly(V) =C, Clpt(V) = CL(V)+V-ClL(V).

We have Cli(V)/Clp_1(V) = A*V. Set r := dim(L, N L_). One
has the canonical epimorphism ¢ : CL.(V) — A"V — A"(V/(Ly +
L)) = det(V/(Ly + L)) = Pf*(V;Ly,L_)*. It is easy to deduce
from 4.2.5(i) that the canonical mapping Cl.(V) — CI(V)/(L- - CI(V) +
Cl(V)-Ly) = Pf(V; Ly, L_)* factors through ¢ and the induced map
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f: Pf?(V; Li,L )" — Pf(V;Ly,L_)* is an isomorphism. f* is the desired
isomorphism Pf(V; Ly, L_) = Pf*(V;Ly,L_).

Here is an equivalent definition. Let M be an irreducible (Z/27)-graded
C1(V)-module. The canonical embedding det(Ly NL_) C A*(L+ NL_) =
Cl(LyNL_) C CYV) induces a map det(L+ N L_) ® My, — ME+"L-,
which is actually an isomorphism. It is easy to deduce from 4.2.5(i)
that the composition ML+ — ME+NE— =5 det(Ly N L) ® My, n. —
det(Ly N L_) ® My_ is an isomorphism. It induces an isomorphism
Pf(V;Ly,L_) := M" @ (My_)®' — det(Ly NL_) = Pf(V;Ly,L_),

which is actually inverse to the one constructed above.

4.2.7. Before constructing the isomorphism Pf®Pf~ == det we will

construct a canonical isomorphism
(170) Pf(Vae V5L, @ L, L& LY) " det(V;Ly, L)

where V is a finite dimensional vector space without any bilinear form on it,
Ly C V are arbitrary subspaces and V @ V* is equipped with the obvious
bilinear form (the Lh.s. of (170) makes sense because L+ @ L1 is Lagrangian,

the r.h.s. of (170) is defined by (165)). Set
(171) M=AV®(detLy)*, AV:=a\V.

M is the irreducible CI(V @& V*)-module with ME+®LE = ¢, so according
to (166) Pf(V @& V* Ly ® L{,L_ ® L) = (M, g;1)*. Clearly
My = AN(V/L_) @ (det Ly)* and M, ;. = det(V/L_) @ (det Ly)* =
det(V; Ly, L_)* (see (165)). So we have constructed the isomorphism (170).

4.2.8. Now let (V;L4,L_) be a Lagrangian triple. We will construct a

canonical isomorphism
(172) Pf(V;Ly, L)@ Pf(V " ;Ly,L_) — det(V; Ly, L)

where V'~ denotes V' equipped with the bilinear form —( , ). If W is a finite

dimensional vector space equipped with a nondegenerate symmetric bilinear
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form then (V@ W;Ly @ W,L_ ® W) is a Lagrangian triple. (170) can be

rewritten as a canonical isomorphism.
(173) det(V;Ly, L) —Pf(Ve®H;L, ®H,L_® H)

where H denotes C? equipped with the bilinear form (9 }). On the other
hand (168) yields an isomorphism

(174)
Pt(V;Ly, L )@Pf(V L., L ) > Pt(Vo H; L, ® H,L_® H)

where H’ denotes C? equipped with the bilinear form ((1) 91). So an

isomorphism ¢ : H' — H induces an isomorphism

ou: PRV Ly, L)YQPE(V 3Ly, L) — det(V; Ly, L_).
Lemma. 1f ¢ € Aut H' then
(175) (1) = (det)"px, n=dim(Ly NL-).

Proof. Aut H' acts on the r.h.s. of (174) by some character y : Aut H' — C*.
Any character of Aut H' is of the form ¢ +— (dety)™, m € Z/2Z.
x(5'9) = (=1)", n:=dim(Ly N L_), because —1 € Aut(V; Ly, L_) acts
on Pf(V; Ly, L_) as (—1)" (see 4.2.4). Som =n mod 2. O

We define (172) to be o, for any ¢ : H' —— H such that detp = 1.

Remarks

(i) (172) is compatible with decompositions of (V; L4, L_) into orthogo-
nal direct sums; i.e., if one has such a decomposition (V;L;,L_) =
(VL LY L1 )&(V?; L2, L%) then the isomorphisms (172) for (V; Ly, L_),
(VL LY LY), and (V% L%,L?) are compatible with (168) and
the canonical isomorphism det(V;Li,L_) = det(V};; LY, L) ®
det(V? L%, L2).

(ii) (170) is compatible with decompositions of (V;L.,L_) into direct

sums.
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4.2.9. In this subsection (which can be skipped by the reader) we give
an equivalent construction of (172). We will use the superalgebra anti-
isomorphism * : CI(V~) — CI(V) identical on V (for any vi,... ,v, € V
one has (v1...v)" = (=1)¥E=1D/2y, . ;). We also use the canonical map
sTr : CI(V) = Cl, (V) — Cl,(V)/Clp—1(V) = det V where n = dim V' and
Cli (V) is defined by (169). It has the “supertrace property”

(176) sTr(ab) = (—1)P@P0) §Tr(ba)

where a,b € CI(V) are homogeneous of degrees p(a),p(b) € Z/2Z. Indeed,
it is enough to prove (176) in the case a € V, p(ab) = n mod 2; then
b e Cl,—1(V) and (176) is obvious. Or one can check that sTr(a) coincides
up to a sign with the supertrace of the operator a : M — M where M is an
irreducible Cl(V)-module.

Now consider the map
(177)  detL_ @ Pf(V; L4, L )" ®@det Ly @ PE(V™; Ly, L_)* — detV

defined by a— @ x @ a4 @y — sTr(a_za;y*). Here ay € det Ly C A*(Ly) =
Cl(Ly) Cc CI(V), x € PI(V; Ly, L_)* = CI(V)/(L- - Cl(V) + CI(V) - L),
y* € CI(V)/(Ly - Cl(V)+ Cl(V) - L_), so (177) is well-defined. It is easy
to see (e.g., from 4.2.5 (i)) that (177) is an isomorphism. It induces an

isomorphism
Pf(V;Ly, L) @Pf(V s Ly, L) s det Ly @det L_ ® (det V)* =det(V; Ly, L_)
One can show that this isomorphism equals (172).

4.2.10. Let X and Qbeasin4.2.1 and Q' C Q asin 4.2.2. To these data we
have associated a Lagrangian triple (V; L4, L_) such that det(V; Ly, L_) =
det RI'(X, Q) (see 4.2.2). Set Pfo/(Q) := Pf(V; Ly, L_). According to 4.2.9
we have a canonical isomorphism Pfo/(Q) ® Pfo/(Q~) — det RT'(X, Q).
To define Pf(Q) it is enough to define a compatible system of isomorphisms

Pfo/(Q) — Pfé,(Q) for all pairs (Q/, é’) such that @' c Q. To define
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Pf(Q) ® Pf(Q~) — det RI'(X, Q) it suffices to prove the commutativity of

PfQI(Q) ®NPfQ/<Q7) = det RF(X, Q)

~

Pfé,(Q)@Pfé/(Qf) —

The Lagrangian triple (‘7;E+,Z,) corresponding to Q' is related to the
triple (V; L, L_) corresponding to Q' as follows: if A = H(X,Q'/Q') C
HY(X,Q/Q') = Ly then

(178) V=A'YA, Li=L /ACV, L_=L_NAt—V

(notice that AN L_ = HY(X,Q') = 0). So it remains to do some linear
algebra (see 4.2.11). It is easy to check that our definition of Pf(Q) and
Pf(Q) ® Pf(Q~) — det RI'(X, Q) makes sense for families of Q’s.

4.2.11. Let (V;L4,L_) be a Lagrangian triple, A C L4 a subspace such
that AN L_ = 0. Then (V;L,,L_) defined by (178) is a Lagrangian
triple. In this situation we will say that (‘7;Z+,Z_) is a subquotient of
(V;Ly,L_). It is easy to show that a subquotient of a subquotient is
again a subquotient. So we can consider the category T' with Lagrangian
triples as objects such that a morphism from (V;Ly,L_) to (V'L ,L")
is defined to be an isomorphism between (V;L,,L_) and a subquotient
of (V/;L!,,L"). Consider also the category C whose objects are finite
complexes of finite dimensional vector spaces and morphisms are quasi-
isomorphisms. Denote by T the category whose objects are (Z/2Z)-graded
1-dimensional vector spaces and morphisms are isomorphisms preserving
the grading. The complex (164) considered as an object of C' depends
functorially on (V;Ly,,L_) € T: if (V;Ly,L_) is the subquotient of
(V; Ly, L) corresponding to A C L4 then we have the quasi-isomorphism
L. — V/L,

[SEEN [SEEN

z, —_— ‘7/E+ZAJ'/L+
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Applying the functor det : C — 1T from [Kn-Mu] we see that
det(V; Ly, L_) € 1 depends functorially on (V; Ly, L_) € T. If (‘7, 1~1+, E_)
is the subquotient of (V; L, L_) corresponding to A C Ly then the iso-
morphism between det(V; Ly, L_) = (detLy) ® (det L_) ® (det V)* and
det(V; Ly, L_) = (det L) @ (det L_) @ (det V)* comes from the natural
isomorphisms det L, = detA @ det L, detL_ = det L_ ® det(V/AL),
det V = det A @ det V @ det(V/AL).

As explained in 4.2.10 we have to define Pf as a functor 7' — T and to show
that the isomorphism Pf(V; L, L )@ Pf~(V; Ly, L) — det(V; Ly, L)
from 4.2.8 is functorial.

If (V; Ly, L_) is the subquotient of (V; Ly, L_) corresponding to A C L
then

PE(V;Ly,L)* = CUV)/(L_-ClV)+CLV)-Ly)

PE(V:Ly, L )* = CIAY)/((L-NAY)-CIAY) + CLAY) - Ly).
So the embedding CI(A+) — CI(V) induces a mapping
(179) PE(V;Ly, L) — PE(V; Ly, L_)".

This defines Pf* as a functor T — {(Z/2Z)-graded 1-dimensional spaces}
(it is easy to see that composition corresponds to composition). It remains

to show that

a) (179) is an isomorphism,

b) (179) is compatible with the pairings Pf(V; Ly, L_)*®Pf(V~; Ly, L_)* —
det(V; Ly, L_)* and PE(V; Lo, L_)*®@Pf(V~; Ly, L_)* = det(V; Ly, L_)*
from 4.2.8.

b) can be checked directly and a) follows from b). One can also prove a)

by reducing to the case where (V;L,,L_) is a mazimal subquotient, (i.e.,

A® (LyNL_)= Ly) and then using 4.2.5 (ii).

4.2.12. Let E be a vector bundle on X. Then F @ (E* ® wx) has the

obvious structure of w-orthogonal bundle. We will construct a canonical
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isomorphism
(180) Pf(E @ (E* @ wy)) — det RT'(X, E) .

Choose a subsheaf E' C FE and a locally free sheaf E” O FE so that
HY(X,E') = 0, HY(X,E") = 0, and E”/E’ has finite support. Set
V = HYX,E"/E"), Ly = HYX,E'/JE) C V, L_ = HY(X,E") C V.
Then RI'(X, E) can be identified with the complex 0 — L_ — V/L, — 0
and det RT'(X, E) with det(V;Ly,L_). On the other hand the Pfaffian
of @ := E® (E* ® wx) can be computed using the subsheaf Q' :=
E' @ (E")* ® wx) € Q. Then Pfy(Q) equals the Lh.s. of (170). So
(170) yields the isomorphism (180). One checks that (180) does not depend
on E' and E”.

4.2.13. The notion of Lagrangian triple has a useful infinite dimensional

generalization. First let us recall some basic definitions.

Definition. A Tate space is a complete topological vector space having a
base of neighbourhoods of 0 consisting of commensurable vector subspaces

(i.e., dimU; /(U; NUz) < oo for any Uy, Uy from this base).

Remark.  Tate spaces are implicit in his remarkable work [T]. In fact,
the approach to residues on curves developed in [T] can be most naturally
interpreted in terms of the canonical central extension of the endomorphism
algebra of a Tate space, which is also implicit in [T]. A construction of the

Tate extension can be found in 7.13.18.

Let V be a Tate space. A vector subspace P C V is bounded if for
every open subspace U C V there exists a finite set {v1,...,v,} C V such
that P € U 4+ Cvy + ...Cuv,. The topological dual of V is the space V*
of continuous linear functionals on V' equipped with the (linear) topology
such that orthogonal complements of bounded subspaces of V' form a base
of neighbourhoods of 0 € V*. Clearly V* is a Tate space and the canonical

morphism V' — (V*)* is an isomorphism.
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Ezample (coordinate Tate space). Let I be a set. We say that A, B C I
are commensurable if A\(ANB) and B\ (BNA) are finite. Commensurability
is an equivalence relation. Suppose that an equivalence class A of subsets
A C I is fixed. Elements of A are called semi-infinite subsets. Denote
by C((I,A)) the space of formal linear combinations }_ c;e; where ¢; € C
vanish when ¢ ¢ A for some semi-infinite A. This is EZ% Tate vector space
(the topology is defined by subspaces C[[A]] := {Z cie;} where A is semi-
infinite). The space dual to C((I,.A)) is C((1 ,./146’1)4) where A’ consists of
complements to subsets from A. Any Tate vector space is isomorphic to
C((I,A)) for appropriate I and A; such an isomorphism is given by the
corresponding subset {e;} C V called topological basis of V.

A c-lattice in V is an open bounded subspace. A d-lattice® in V is a
discrete subspace I' C V such that I' + P = V for some c-lattice P C V. If
W C V is a d-lattice (resp. c-lattice) then there is a c-lattice (resp. d-lattice)
W' C V such that V. =W @ W'. If W C V is a d-lattice (resp. c-lattice)
then W1 C V* is also a d-lattice (resp. c-lattice) and (W+)+ = W.

A (continuous) bilinear form on a Tate space V' is said to be nondegenerate
if it induces a topological isomorphism V' — V*. Let V be a Tate space
equipped with a nondegenerate symmetric bilinear form. A subspace L C V

is Lagrangian if L+ = L.

Definition. A Tate Lagrangian triple consists of a Tate space V equipped
with a nondegenerate symmetric bilinear form, a Lagrangian c-lattice Ly C

V', and a Lagrangian d-lattice L_ C V.

Example. Let Q be an w-orthogonal bundle on X. If z € X let Q ® O,
(resp. Q ® K,) denote the space of global sections of the pullback of Q
to SpecO, (resp. SpecK.). Q ® K, is a Tate space equipped with the

nondegenerate symmetric bilinear form Res( , ). For every non-empty finite

*)¢ and d are the first letters of “compact” and “discrete”.
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S C X we have the Tate Lagrangian triple

(181) V:= @S(Q ®Kg), Li:= @S(Q ®0.), L_:=T(X\S, Q).
Te S

Let (V; Ly, L_) be a Tate Lagrangian triple. Then for any c-lattice A C
L, such that AN L_ = 0 one has the finite-dimensional Lagrangian triple
(V;Ly,L_) defined by (178). As explained in 4.2.11 P£(V;L,,L_) and
det(‘~/;l~}+,f_) do not depend on A. Set Pf(V; Ly, L_) := Pf(YN/; E+,l~}_),
det(V; Ly, L) := det(1~/; E+, E_) Equivalently one can define det(V; Ly, L_)
to be the determinant of the complex (164) and Pf(V; Ly, L_) can be de-
fined by (166) or (167) (the Cl(V)-module M from (166) should be assumed

discrete, which means that {v € Vjvm = 0} is open for every m € M).

Ezample. 1f (V; Ly, L_) is defined by (181) then Pf(V; Ly, L_) = Pf(Q),
det(V; Ly, L_) =det RT'(X, Q).

The constructions from 4.2.7 and 4.2.8 make sense in the Tate situation
with the following obvious changes: a) in 4.2.7 one should suppose that L
is a c-lattice and L_ is a d-lattice, b) (171) should be replaced by the

following formula:

(182) M =1lim A\(V/U) @ det(L4+/U)*

U
where U belongs to the set of c-lattices in L. The r.h.s. of (182) is the
fermionic Fock space, i.e., the direct sum of semi-infinite powers of V (cf.

Lecture 4 from [KR] and references therein).

Remark.  The expression for Pf(Q) in terms of the triple (181) can be
reformulated as follows. For x € X consider the abelian Lie superalgebras
ap, C ag, such that the odd component of ap, (resp. ag,) is Q® O, (resp.
Q ® K,) and the even components are 0. The bilinear symmetric form on
Q ® K, defines a central extension 0 — C — ag, — ax, — 0 with a
canonical splitting over ap,. The Clifford algebra Cl(Q ® K) is the twisted
universal enveloping algebra U'ag, and M, := Cl(Q ® K;)/Cl(Q ® K,) -
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(Q ® Oy) is the vacuum module over U'ag,. According to (167) Pf(Q)* is
the space of coinvariants of the action of I'(X\S, Q) on ®SM:C.
Te

4.2.14. In this subsection we discuss families of Tate Lagrangian triples.
Let R be a commutative ring. We define a Tate R-module to be a topological
R-module isomorphic to P @& Q* where P and @ are (infinite) direct sums
of finitely generated projective R-modules (a base of neighbourhoods of
0 € P® Q* is formed by M+ C Q* for all possible finitely generated
submodules M C Q). This bad* definition is enough for our purposes.
In fact, we mostly work with Tate R-modules isomorphic to Vo@R where Vj
is a Tate space.

The discussion of Tate linear algebra from 4.2.13 remains valid for Tate

R-modules if one defines the notions of c-lattice and d-lattice as follows.

Definition. A c-lattice in a Tate R-module V is an open bounded
submodule P C V such that V/P is projective. A d-lattice in V is a
submodule I' C V' such that for some c-lattice P C V one hasI'N P =0

and V/(I' + P) is a projective module of finite type.*

Now if % € R we can define the notion of Tate Lagrangian triple just as
in 4.2.13 (of course, if 3 ¢ R one should work with quadratic forms instead
of bilinear ones, which is easy). The Pfaffian of a Tate Lagrangian triple
(V;Ly,L_) over R is defined as in 4.2.13 with the following minor change:
to pass to the finite-dimensional Lagrangian triple (‘7, L, Z_) defined by
(178) one has to assume that A C Ly is a c-lattice such that ANL_ =0
and V/(A + L_) is projective (these two properties are equivalent to the
following one: A+ + L_ =V).

Example. Let D C X ® R be a closed subscheme finite over Spec R that
can be locally defined by one equation (i.e., D is an effective relative Cartier

“JA projective R((t))-module of finite rank is not necessarily a Tate module in the
above sense. Our notion of Tate R-module is not local with respect to Spec R. There are

also other drawbacks.

*)Then this holds for all c-lattices P’ C P.
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divisor). Let Q be a vector bundle on X ® R. Suppose that the morphism
D — Spec R is surjective. Then

V= @@HO(X ® R, Q(nD)/Q(—mD))

m n

is a Tate R-module®) |

Ly i=lm H'(X ® R, Q/Q(~mD)) € V

m

is a c-lattice, and
L =H'(X®R)\D,Q)CV

is a d-lattice. If Q is an w-orthogonal bundle then (V;Li,L_) is a
Lagrangian triple and Pf(Q) = Pf(V; Ly, L_) (cf. 4.2.13).

4.2.15. Denote by B the groupoid of finite dimensional vector spaces over C
equipped with a nondegenerate symmetric bilinear form. In this subsection

(which can be skipped by the reader) we construct canonical isomorphisms

(183)
PI(VOQW;: Ly @W,L_@W) =5 PE(V; Ly, L_)®49W @ | det W|@PVil+l-)

(184) Pf(Q@ W) == PH(Q)® ™ W @ | det W|*(?)

where W € B, (V;Ly,L_) is a (Tate) Lagrangian triple, Q is an w-
orthogonal bundle on X, | det W] is the determinant of W considered as a
space (not super-space!), and p(V; Ly, L_), p(Q) € Z/27Z are the parities of
Pf(V; Ly, L), Pf(Q). | det W|®™ makes sense for n € Z/27Z because one has

the canonical isomorphism | det W|®% = C, (w1 A. . . Aw,)®? — det(w;, w;).

“n fact, V is isomorphic to Vo®R for some Tate space Vo over C. Indeed, we can
assume that R is finitely generated over C and then apply 7.12.11. We need 7.12.11 in
the case where R is finitely generated over C and the projective module from 7.12.11 is a
direct sum of finitely generated modules; in this case 7.12.11 follows from Serre’s theorem

(Theorem 1 of [Se]; see also [Ba68], ch.4, §2) and Eilenberg’s lemma [Ba63].
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To define (183) and(184) notice that B is a tensor category with & as
a tensor “product” and both sides of (183) and (184) are tensor functors
from B to the category of 1-dimensional superspaces (to define the r.h.s. of
(184) as a tensor functor rewrite it as | Pf(Q)|® 4™ W @ (det W)®P(Q) where
| Pf(Q)] is obtained from Pf(Q) by changing the (Z/2Z)-grading to make it
even and det W is the determinant of W considered as a superspace).

We claim that there is a unique way to define (183) and (184) as
isomorphisms of tensor functors so that for W = (C,1) (183) and (184)
equal id. Here 1 denotes the bilinear form (z,y) — zy, x,y € C.

To prove this apply the following lemma to the tensor functor F' obtained

by dividing the Lh.s. of (183) or (184) by the r.h.s.

Lemma.  Every tensor functor F' : B — {1-dimensional vector spaces}
is isomorphic to the tensor functor Fj defined by Fj(W) = L®dmW,
L := F(C,1). There is a unique isomorphism F — Fy that induces the
identity map F(C,1) — Fi(C,1).

Proof. For every W € B the functor F' induces a homomorphism fy :
AutW — C*. Since AutW is an orthogonal group fi(g) = (detg)*™)
for some n(W) € Z/2Z. Clearly n(W) = n does not depend on W. Set
Wi := (C,1). F maps the commutativity isomorphism (93): W1 & Wy —
Wi @ Wy to id. Son = 0, i.e., fyy is trivial for every W. The rest is clear

because the semigroup |B| of isomorphism classes of objects of B is Z. O

Remarks

(i) (183) was implicitly used in 4.2.8.
(ii) We will use (183) in 4.2.16.

4.2.16. In this subsection (which can certainly be skipped by the reader) we
explain what happens if C is replaced by a field k of characteristic 2. In this
case one must distinguish between quadratic forms (see [Bourb59], §3, n°4)
and symmetric bilinear forms. In the definition of Lagrangian triple V should

be equipped with a nondegenerate quadratic form. So in the definition of
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w-orthogonal bundle Q should be equipped with a nondegenerate quadratic
form Q@ — wx (since k has characteristic 2 nondegeneracy implies that the
rank of Q is even). The construction of Pf @ Pf~ = det from 4.2.8 has to
be modified. If (V; L4, L_) is a Lagrangian triple and W is equipped with
a nondegenerate symmetric bilinear form then (V@ W; L, @ W, L_@ W) is
a Lagrangian triple. The bilinear forms (§ ° ) and (9 }) are not equivalent
in characteristic 2, but one can use (183) for W = H and W = H' to
construct Pf @ Pf~ — det. Finally we have to construct (183) and (184)
in characteristic 2. Let us assume for simplicity that k is perfect. Then the
characteristic property *) of the isomorphisms (183) and (184) is formulated
just as in 4.2.15, but the proof of their existence and uniqueness should be
modified. The semigroup |B| (see the end of the proof of the lemma from
4.2.15) is no longer Z ; it has generators a and b with the defining relation

a+ b = 3a (a corresponds to the matrix (1) of order 1 and b corresponds to

(94))- So the group corresponding to B is Z, which is enough.
4.3. Pfaffians II.

4.3.1. Fix an n-dimensional vector space W over C and a nondegenerate
symmetric bilinear form ( ) on it. To simplify notation we write O,, and
SO, instead of O(W) and SO(W).

Let F be an SO,-torsor on X. The corresponding rank n vector bundle
Wg carries the bilinear form ( )z, and we have a canonical isomorphism
detWr = Ox @ det W. Let L € wl/z(X), i.e., L is a square root of wy.
Then Wr ® L is an w-orthogonal bundle, so Pf(Wr ® £) makes sense (see
4.2). Consider the “normalized” Pfaffian

(185) Pfrr =Pt(Wr® L)@ PI (W ® £)®!

“)To formulate this property in the non-perfect case one should consider B as a stack

rather than a groupoid.
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and the “normalized” determinant

(186) v(F) := det RT'(X,Wx) @ det RT'(X, Ox @ W)®~1,

~

As explained in 4.2.1 there are canonical isomorphisms cy; : Pf®? =

det RI'. Using, e.g., ¢; one obtains an isomorphism*)

(187) Pty 9% 5 v (F)
where
(188) ve(F) :=det RT(X, Wz ® L) @ det RT'(X, W ® £)®7 1.

Construction 7.2 from [Del87] yields a canonical isomorphism

ve(F) = v(F) @ (det Wr @ (det W)® 1, L)
Since det Wr = Ox ® det W one has v, (F) = v(F) and
(189) Pf. %% = v(F).

When F varies Pfz 7 and v(F) become fibers of line bundles on Bungp,
which we denote by Pf, and v.
Denote by v!/2 (Bungp, ) the category of square roots of v. We have the

functor
(190) Pf: w'/?(X) — v'?(Bungo,)

defined by L — Pf,.

w'/?(X) and v/ 2(Bungp, ) are Torsors over the Picard categories
potors(X) and g tors(Bungp,). We have the Picard functor ¢SPin
pa tors(X) — pgtors(Bungp, ); this is the functor ¢ = (¢ from 4.1 in
the particular case G = SO,, G = Spin,,, II = Z/27Z. In 4.3.8-4.3.15
we will show that the functor Pf : w!'/2(X) — v'/2(Bungo, ) has a canonical

*)So the isomorphism (187)=(189) depends on the choice of a square root of -1. This
dependence disappears if one multiplies (187) by i*?*)° where p is the canonical map

Bunso, — mo(Bunso,, ) = m1(S0,) = Z/2Z and p(f)2 € 7./47. We prefer not to do it

for the reason explained in Remark (iii) from 4.2.1.
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structure of £SP"_affine functor. Before doing it we show in 4.3.2-4.3.7 that
for a finite S C X the action of SO, (Kg) on Bungo,, s defined in 4.1.7 lifts
to an action of a certain central extension of SO, (Kg) on the pullback of
Pf; to Bungp, s. Once this action is introduced it is easy to characterize
the (SP"_affine structure on the functor Pf essentially by the SO, (Kg)-

invariance property (see 4.3.8-4.3.10).

4.3.2. Let V be a Tate space equipped with a nondegenerate symmetric
bilinear form of even type, i.e., there exists a Lagrangian c-lattice L C V
(see 4.2.13); if dim V' < oo this means that dim V' is even. Denote by O(V')
the group of topological automorphisms of V' preserving the form. Let us

remind the well known construction of a canonical central extension
(191) 0—-C*—O(V)—0(V)—=0.

Let M be an irreducible (Z/2Z)-graded discrete module over the Clifford
algebra C1(V') (discreteness means that {v € V|vm = 0} is open for every
m € M). Then M is unique up to tensoring by a 1-dimensional (Z/2Z)-
graded space. So there is a natural projective representation of O(V') in M.

(191) is the extension corresponding to this representation, i.e.,

O(V):={(9,¢)lg € O(V), ¢ € Autc M, p(vm) = g(v) - p(m) for m € M} .

Clearly O(V) does not depend on the choice of M (in fact Autc M is
the group of invertible elements of the natural completion of C1(V)). If
(g,¢) € O(V) then ¢ is either even or odd. Let x(g) € Z/2Z denote the
parity of ¢. Then x : O(V) — Z/27Z is a homomorphism.

The preimages of —1 € O(V) in O(V) are not central. Indeed, if
o : M — M, p(m) = m for even m and ¢(m) = —m for odd m then
[—1] :== (=1,¢) € O(V) and

(192) [~1]-g= (1) G- [-1], geO(V)

where § denotes a preimage of g in O(V).
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O(V) and Autc M have natural structures of group ind-schemes. More
precisely, the functors that associate to a C-algebra R the sets O(V®R) and
Aute (M ® R) are ind-schemes (if dim V' = oo then they can be represented
as a union of an uncountable filtered family of closed subschemes.) So O(V)
is a group ind-scheme.

Denote by Lagr(V) the set of Lagrangian c-lattices in V. It has a natural
structure of ind-scheme: Lagr(V) = li_rr)lLagr(AJ-/A) where A belongs to the
set of isotropic c-lattices in V' (so an R-point of Lagr(V') is a Lagrangian
c-lattice in V@R in the sense of 4.2.14). Denote by P = P, the line bundle
on Lagr(V) whose fiber over L € Lagr(V) equals M* := {m € M| Lm = 0}.
The action of O(V) on Lagr(V) canonically lifts to an action of O(V) on P.

Lagr(V) has two connected components distinguished by the parity of
the 1-dimensional (Z/27Z)-graded space M*, L € Lagr(V'). The proof of this
statement is easily reduced to the case where dim V is finite (and even). The
same argument shows that L1, Ly € Lagr(V') belong to the same component
if and only if dim(L; /(L1 N Lg)) is even. Clearly the connected components
of Lagr(V') are invariant with respect to g € O(V) if and only if x(g) = 0.
Therefore x : O(V) — Z/27Z is a morphism of group ind-schemes.

Let us prove that (191) comes from an exact sequence of group ind-

schemes

(193) 0— Gy —O(V)—=0(V)—0.

We only have to show that the morphism O(V) — O(V) is a Gy,-torsor.
To this end fix L € Lagr(V) and set M = Cl(V')/ CI(V)L, so that the fiber
of P = Py over L equals C. Define f : O(V) — Lagr(V) by f(g) = gL.
Set P’ := P\ {zero section}; this is a G,-torsor over Lagr(V'). It is easy to
show that the natural morphism O(V) — f*P’ is an isomorphism, so O(V))

is a Gy,-torsor over O(V).
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Remark. Let L € Lagr(V). Then (193) splits canonically over the stabilizer
of L'in O(V): if g € O(V), gL = L, then there is a unique preimage of ¢ in
O(V') that acts identically on M-,

4.3.3. Set O := C[[t]], K := C((t)). Denote by wo the (completed) module
of differentials of O. Fix a square root of wp, i.e., a 1-dimensional free O-
module wcl)/ 2 equipped with an isomorphism w(lj/ ’® wlO/ 2, wo. Let W
have the same meaning as in 4.3.1. We will construct a central extension of

O, (K) := O(W ® K) considered as a group ind-scheme over C.

Set w}(/Q = w10/2 ®o K, wg = wo ®o K. Consider the Tate space
V = w}</2 ® W. The bilinear form on W induces a K-bilinear form

V xV — wg. Composing it with Res : wxg — C one gets a nondegenerate
symmetric bilinear form V x V — C of even type. Restricting the extension

(193) to O, (K) — O(V) one gets a central extension

(194) 0— Gp — Op(K) — On(K) — 0.

It splits canonically over O,,(O) C O,,(K) (use the remark at the end of 4.3.2
for L = wéﬂ ®@ W C V). The group Aut wé/z = ug acts on the extension
(194) preserving the splitting over O, (O).

4.3.4. Lemma. The automorphism of O, (K) induced by —1 € Aut w})/2

maps § € On(K) to (—1)%9§ where g is the image of § in O,(K) and
0: O,(K)— K*/(K*)? = Z/2Z is the spinor norm.

Proof. According to (192) we only have to show that x(g) = 6(g) for
g € O,(K) C O(V). According to the definition of 6 (see [D71], ch. II, §7) it
suffices to prove that if ¢ is the reflection with respect to the orthogonal
complement of a non-isotropic z € K" then x(g) equals the image of

(v,z) € K* in K*/(K*)? = Z/27Z. We can assume that x € O", x & tO",

L = w10/2 ® W is a Lagrangian c-lattice in V', so x(g) is the parity of
dimL/(LNgL)=dimO/(z,z)0. O

Remarks
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(i) Instead of using reflections one can compute the restriction of x to
a split Cartan subgroup of SO, (K) and notice that x(g) = 0 for
g € 0,(C).

(ii) The restriction of 6 to SO, (K) is the boundary morphism

(195) SO (K) — HY(K, up) = 7.)27

for the exact sequence 0 — po — Spin,, — SO,, — 0.
(iii) If g € O, (K) = O(W @ K) then dim(W ® O) /(W @ O) N g(W ® O))
is even if and only if #(g) = 0. This follows from the proof of Lemma

4.3.4.

4.3.5. Consider the restriction of the extension (194) to SO, (K):

—_—~—

(196) 0— Gy — SOL(K) — SO, (K) — 0.

It splits canonically over SO,(0O). The extension (196) depends on the

choice of w})/ 2, so one should rather write SO, (K), where C is a square

root of wp. Let C’ be another square root of wp, then ¢’ = C ® A where
A is a po-torsor over Spec O (or over Spec C, which is the same). Consider
the (trivial) extension of Z/27Z by G,, such that A is the us-torsor of its

splittings. Its pullback by (195) is a (trivial) extension

(197) 0— Gy — SOR(K) 4 — SOR(K) — 0

equipped with a splitting over SO,,(O) (in 4.1.8 we have already introduced

this extension in a more general situation).

P

Lemma 4.3.4 yields a canonical isomorphism between SO, (K) and the

—_—~—

sum of the extensions SO, (K), and SO, (K) 4. It is compatible with the

splittings over SO, (O).

4.3.6. Let S, Og, and Kg have the same meaning as in 4.1.7. Fix

L € w'?(X) and denote by w}(/j the space of sections of the pullback of

L to Spec Kg. Then proceed as in 4.3.3: set V := w}{/j ® W, define the
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scalar product on V using the “sum of residues” map wg, — C, embed

SO, (Kg) into O(V) and finally get a central extension

(198) 0= Gy — SO (Ks), — SOu(Ks) — 0

with a canonical splitting over SO, (Og).

Remark.  (198) is the “super-sum” of the extensions (196) for K = K,
x € S. Let us explain that if G;, i € I, are groups equipped with morphisms
0; : Gi — Z/27 and C;’l are central extensions of G; by Gy, then the super-
sum of these extensions is the extension of EB G; by Gy, obtained from the
usual sum by adding the pullback of the starzldard extension
0—>Gm—>A—>@(Z/QZ)—>O
i€l

where A is generated by G,, and elements e;, ¢ € I, with the defining
relations e? =1, ce; = ejc for ¢ € Gy, e;ej = (—1) - eje; for i # j. In our
situation 0, : SO, (K;) — Z/2Z is the spinor norm.

If £,L € w'/?(X) then £ = L®E where & is a po-torsor. It follows from

e~ —

4.3.5 that there is a canonical isomorphism between SO,,(Kg) » and the sum

of the extensions SO/,YI?S)E and 55;(}?5)5 (see 4.1.8 for the definition of
SOn(Ks)g)-

4.3.7. In 4.3.1 we defined the line bundles Pf; on Bungo,, £ € w'/?(X).
Denote by Pff; the pullback of Pf, to the scheme Bungo, s defined in 4.1.7.
We have the obvious action of SO, (Og) x G, on Pf2 ( A € G,, acts as

P

multiplication by X). We are going to extend it to an action of SO,(Kg),

on Pfg compatible with the action of SO, (Kg) on Bungo, s.

Let v € Bungo,,s, § € SOn(Kg),. Denote by F and F' the SO(W)-

bundles corresponding to u and gu where g € SO, (Kg) is the image of
g. We must define an isomorphism Pf, = Pf c,F', i.e., an isomorphism
Pf(Wr®L) — Pf(Wr ®L). According to 4.2.13 it suffices to construct an
isomorphism Pf(V;L,,L_) — Pf(V;L,,L" ) where V is the Tate space

from 4.3.6, L = wlo/; QW CcV,and L_,L" CV are discrete Lagrangian
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subspaces such that L’ = gL_. According to (166) this is equivalent to
constructing an isomorphism f : (Mg )®~1 = (M, )®~!. We define f
to be induced by the action of § € O(V) on M.

—~—

Attention: A € G,, C SO, (Kg), acts on Pfg as multiplication by A7!.

4.3.8. As explained in 4.3.1 our goal is to define a canonical ¢SP_affine
structure on the functor (190). This means that for £ € w!'/?(X) and a

po-torsor £ on X we must define an isomorphism
(199) Pfo @™ S5 Pty, L=L®E.

We must also check certain compatibility properties for the isomorphisms
(199).

To simplify notation we will write £¢ instead of E?pin. Let S C X be finite.
In 4.1.7-4.1.8 we constructed an action of the central extension S’O/n\(}g)(S
on Kg := the pullback of /¢ to Bungp, 5. So it follows from 4.3.6-4.3.7 that

SO, (Ks)p acts both on Pf2 @¢2 and PfZ,. Recall that the fibers of both
sides of (199) over the trivial SO,-bundle equal C.

4.3.9. Theorem. There is a unique isomorphism (199) such that for every S

the corresponding isomorphism Pfg ®€§ = Pfg, is SOn(Kg) -equivariant
and the isomorphism between the fibers over the trivial SO,,-bundle induced
by (199) is identical.

The proof will be given in 4.3.11-4.3.13. See §5.2 from [BLaSo] for a short

proof of a weaker statement.

4.3.10. Proposition. The isomorphisms (199) define an £SP_affine structure
on the functor Pf : w'/2(X) — v'/2(Bungp,,).

The proof will be given in 4.3.15.

4.3.11. Let us start to prove Theorem 4.3.9. The uniqueness of (199) is
clear if n > 2: in this case SO, is semisimple, so one has the isomorphism

(155) for G = SOy, S # 0. If n = 2 the action of SO, (Kg) on Bungp, s is
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not transitive, but SO,, over the adeles acts transitively on lim Bungo, s(C),

S
which is enough for uniqueness.

While proving the existence of (199) we will assume that n > 2. The
case n = 2 can be treated using the embedding SOs — SO3 and the
corresponding morphism Bungp, — Bungp, or using the remark at the
end of 4.3.14.

Consider the SO, (Kg)-equivariant line bundle Cs := Pf2 @63 ® (Pf3,)*
on Bungp, s. The stabilizer of the point of Bungp,, s corresponding to the
trivial SO,-bundle with the obvious trivialization over S equals SO, (Ag),
Ag := H°(X\S,0x). So the action of SO,,(Kg) on Cs induces a morphism
fs 1 SOn(As) — Gyy,. It suffices to prove that fg is trivial for all S (then
for S # 0 one can use (155) to obtain a SO, (Kg)-equivariant trivialization
of Cg and of course these trivializations are compatible with each other).

Denote by ¥ the scheme of finite subschemes of X (so X is the disjoint
union of the symmetric powers of X). Ag, Og, and Kg make sense for a
non-necessarily reduced*) S € ¥ (e.g., Og is the ring of functions on the
completion of X along S) and the rings Ag, Og, Kg are naturally organized
into families (i.e., there is an obvious way to define three ring ind-schemes
over 3 whose fibers over S € ¥ are equal to Ag, Og, Kg respectively).

It is easy to show that the morphisms fs form a family (i.e., they come
from a morphism of group ind-schemes over ¥). Clearly if S C S’ then the
restriction of fg to SO,(Ag) equals fg. In 4.3.12-4.3.13 we will deduce
from these two facts that fg = 1.

4.3.12. Let Y be aseparated scheme of finite type over C and R a C-algebra.

Set Yiat(R) = lim Mor(U, Y) where the limit is over all open U C X ® R such

U
that the fiber of U over any point of Spec R is non-empty. In other words,

elements of Y;at(R) are families of rational maps X — Y parameterized by

*)This is important when S varies. For a fixed S the rings As, Os and Kgs depend

only on Sred-
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Spec R. The functor Y4 is called the space of rational maps X — Y. It is
easy to show that Yj,: is a sheaf for the fppf topology, i.e., a “space” in the
sense of [LMB93].

We have the spaces Y (Ag), S € ¥, which form a family (i.e., there is a
natural space over 3 whose fiber over each S equals Y (Ag)). So a regular
function on Yia defines a family of regular functions fg on Y (Ag), S € %,
such that for S C S’ the pullback of fg¢ to Y(Ag) equals fg. It is easy to

see that a function on Y, is the same as a family of functions fg with this

property.

4.3.13. Proposition. Let G be a connected algebraic group.

(i) Every regular function on Gy, is constant. In particular every group
morphism Gy, — Gy, is trivial.
(ii) Moreover, for every C-algebra R every regular function on Gyay ® R is

constant (i.e., an element of R).

Proof. Represent G as UUi where U; are open sets isomorphic to (A!\
{0})" x A’ (e.g., let U ZC G be the big cell with respect to some Borel
subgroup, then G is covered by a finite number of sets of the form gU,
g € G). One has the open covering Gyay = U(Ui)rat and (U;)rat N (Uj)rat # 0.
So it is enough to prove the proposition fo; G = (G)" x (Gg)®. Moreover,
it suffices to prove (ii) for G, and Gy,.

Consider, e.g., the G,, case. Choose an ample line bundle A on X and
set V,, := HY(X, A®"), V! := V,, \ {0}. Define 7, : V! x V! — (Gy)rat by
(f,9) — f/g. A regular function ¢ on (G, )rat ® R defines a regular function
mro on (V! x V))® R, which is invariant with respect to the obvious action
of Gy, on V,, x V. For n big enough dim V;, > 1 and therefore 7;¢ extends
to a Gp,-invariant regular function on (V,, x V,,) ® R, which is necessarily a

constant. So ¢ is constant. O

4.3.14. This subsection is not used in the sequel (except the definition of
GRASG needed in 5.3.10).
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Let GG be a connected algebraic group. The following approach to Bung
seems to be natural.

Denote by GRASg the space of G-torsors on X equipped with a
rational section. The precise definition of this space is quite similar to the
definition of Yt from 4.3.12. We would call GRASqg the big Grassmannian
corresponding to G and X because for a fixed finite S C X the space
of G-bundles on X trivialized over X \ S can be identified with the ind-
scheme G(Kg)/G(Og) = [] G(K5)/G(Oy) (see 5.3.10), and G(K,)/G(Ox)
is called the affine Gmssrjzea)ém'an or loop Grassmannian (see 4.5 or [MV]).

The morphism 7 : GRASs — Bung is a Gpa-torsor for the smooth
topology (the existence of a section S — GRAS¢ for some smooth surjective
morphism S — Bung is obvious if the reductive part of G equals GL,,, SL,
or Spy; for a general G one can use [DSim]).

Consider the functor
(200) 7 : Vect(Bung) — Vect(GRASq)

where Vect denotes the category of vector bundles. It follows from 4.3.13
that (200) is fully faithful. One can show that for any scheme T" every vector
bundle on Gyat X T comes from T'. This implies that (200) is an equivalence.
Remark. Our construction of (199) can be interpreted as follows: we
constructed an isomorphism between the pullbacks of the 1.h.s. and r.h.s.
of (199) to GRASs0,, then we used the fact that (200) is fully faithful. It
was not really necessary to use the isomorphism (155). So the construction

of (199) also works in the case of SOs.

4.3.15. Let us prove Proposition 4.3.10. The isomorphisms (199) are
compatible with each other (use the uniqueness statement from 4.3.9). It

remains to show that the tensor square of (199) equals the composition
(201) PIE2 e v sy s PRS2

where v, is defined by (188).
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Fix an SO,-torsor F on X and its trivialization over X \ S for some
non-empty finite S C X. Using the trivialization we will compute the
isomorphisms Pf%?f - Pf%,%f induced by (199) and (201).

Recall that Pfz 7 := PE(Wr ® £) @ PE(W ® £)®~1. According to 4.2.13

PE(Wr® L) =Pi(V;Ly, L), PEW®L)=PF(V;L}, L)

where V = Lg,@W, L_ =T(X\S,L&W), LY = Lo, ®W, and L is the
space of sections of the pullback of Wz ® L to Spec Og (we use the notation
of 4.3.6). Using (166) one gets

(202) Pfer = M @ (M)

where M is an irreducible Z/27Z-graded discrete module over C1(V'). Pfz
has a similar description in terms of V', L', , (L%)’, L' where V' = Ly @W,
etc. Fix a trivialization of the po-torsor £ from 4.3.8 over S. It yields a

trivialization of £ over Spec Og and therefore an identification
(203) (V' L (L)) = (Vo Ly, LY).

Since L_ is not involved in (202) we obtain an isomorphism Pf,;r ——
Pf 7. It is easy to show that it coincides with the one induced by (199)
(notice that the trivialization of F over X \ S and the trivialization of &£
over S induce a trivialization of /"™ over F because the Lh.s. of (150) has
a distinguished element).

Now we have to show that the isomorphism Pf%?f = Pf%,% + induced by
(201) is the identity provided Pf; » and Pf;/ 7 are identified with the r.h.s.
of (202).

The trivialization of F over X \ S yields an isomorphism v (F) ——
d(L%, L) where d(LY,Ly) is the relative determinant, i.e., d(LY,Ly) =
det(Ly/U) ® det(LY/U)®~1 for any c-lattice U € L N LY. We have a
similar identification vz (F) = d((L%)’,L.). The isomorphism vz (F) ——
ve/(F) from (201) is defined in [Del87] as follows. One chooses any
isomorphism f between the pullbacks of £ and £’ to SpecOg. f yields
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~

an isomorphism f, : (V,Ly,LY) — (V/,L,(LY%)) and therefore an
isomorphism d(LY, L}) — d(L',,(LY)"), which actually does not depend
on the choice of f. It is convenient to define f using the above trivialization
of the po-torsor € = £ ® LZ~! over Spec Og. Then f, coincides with (203).

Thus we have identified v, (F) and v (F) with d(LY, L4) so that the
isomorphism v (F) — v (F) from (201) becomes the identity map. We
have identified both Pf; » and Pfz 7 with the r.h.s. of (202). It remains
to show that the isomorphism (187) and its analog for £’ induce the same

isomorphism
(204) (M @ (ME))®2 = d(L8, Ly)

According to 4.2.8 and 4.2.13 the isomorphism (204) induced by (187)

can be described as follows. We have the canonical isomorphism
(205) NL+&H @ (NTIOHYy >, q(19 L)

where N is an irreducible (Z/2Z)-graded discrete module over the Clifford
algebra CI(V @ V*) = Cl(V @ V) = C(V ® H) and H denotes C? equipped
with the bilinear form (93) (to construct (205) take for N the r.h.s. of
(182)). On the other hand, P := M ® M is an irreducible (Z/2Z)-graded
discrete module over C1(V)®C1(V) = CI(V®@H") where H” denotes C? with
the bilinear form (} 9). Rewrite the Lh.s. of (204) as PX+®1" g (PLY®H" )«
So an orthogonal isomorphism v : H” =~ H induces an isomorphism (204).
To get the isomorphism (204) induced by (187) we must normalize ¢ by
det ¢ =i (or —i 7?7 we should check!).

Since L_ is not involved in the above description the analog of (187) for

L' induces the same isomorphism (204), QED.

4.3.16. This subsection and 4.3.17 will be used in 4.4.14 (end of the proof
of the horizontality theorem 2.7.3) and in the proof of Theorem 5.4.5 (which
is the main result of this work). However the reader can skip them for the

moment.



HITCHIN’S INTEGRABLE SYSTEM 161

As usual, we set O := C[[t]], K := C((t)). Fix £ € w'/?(X), i.e., L is a
square root of wx. Fix also a square root of wp and denote it by wlo/ 2 Then
one defines a 2-sheeted covering X' of the scheme X" from 2.6.5. Recall
that an R-point of X’ is an R-morphism « : Spec(R®0) — X ® R whose
differential does not vanish over any point of Spec R. Denote by Lg the
pullback of £ to X ® R. By definition, the fiber of X2'(R) over v € X"(R) is
the set of isomorphisms H"(Spec R®0, o*Lg) — R@wéﬂ) in the groupoid
of square roots of RQwo.

The group ind-scheme Auty O := Aut(O,wé/ 2) introduced in 3.5.2 acts
on X4 by transport of structure.

Let M be the scheme from 2.8.1 in the particular case G = SO(W) =
SO,,. Denote by M4 the fiber product of M and X2 over X (so M4 is
a 2-sheeted covering of the scheme M” from 2.8.3). Then the semidirect
product Aute O x SO, (K) acts on M4'. Indeed, M4 is the fiber product of

M”" and X5 over X, and Auts O x SO, (K) acts on the diagram
M/\
l
X — X°
(the action of Aut Ox SO,,(K) on M” was defined in 2.8.4; Auty Ox SO, (K)
acts on X4 and X" via its quotients Aute O and Aut O).
Denote by Pf} the pullback to M4 of the line bundle Pf; on Bungo,
defined in 4.3.1. We will lift the action of Auty O x SO, (K) on M} to an

—_—~—

action of Auty O x SO, (K) on Pf}, where SO, (K) is the central extension

(196) corresponding to wé/ ?. The action of Auty O on Pf} is clear because

Auty O acts on M) considered as a scheme over Bungp,. On the other

e~

hand, SO,(K) acts on Pf;; :=the restriction of Pf} to the fiber of M}

over T € X4. Indeed, this fiber equals Bungp, , where z is the image of

Z in X, and by 4.3.7 the central extension SO, (K;), acts on the pullback
of Pf; to Bungp, . This extension depends only on £, :=the pullback

of £ to SpecO,. Since T defines an isomorphism between (O,wlo/ 2) and
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—_——
~

(O, H%(Spec O, L)) we get an isomorphism SO, (K,), — SO, (K) and
therefore the desired action of SO, (K).

4.3.17. Proposition.

—_—~—

(i) The action of SO,(K) on Pfp

—_——

unique) action of SO, (K) on Pf}.
(ii) The actions of AutoO and SO,(K) on Pf} define an action of

—_—

Auty O x SO, (K).

= T € XJ, comes from an (obviously

Remark. Statement (ii) can be interpreted in the spirit of 2.8.2: the action
of Auts O yields a connection along X on 7* Pf; where 7 is the morphism
M — Bung, and the compatibility of the action of Aute O with that of

SO, (K) means that the action on 7* Pf; of a certain central extension

Jmer (S0, is horizontal.

P

Proof. To define the action of Auty O x SO, (K) on Pf} with the desired
properties we proceed as in 4.3.7. Let R be a C-algebra. Consider an R-
point u of M4' and an R-point g of Auty O 56?(?() Recall that SO,, is an
abbreviation for SO(W). Denote by F and F' the SO(W)-torsors on X ® R
corresponding to u and gu where g is the image of g in Auty O X SO, (K).

We have to define an isomorphism
(206) Pf(Wr ® LR) = Pf(Wj:/ ® LR)

where L is the pullback of £ to X ® R.
Set V .= wcl)/Q ®o K ® W. This is a Tate space over C equipped with a

nondegenerate symmetric bilinear form (see 4.3.3). By 4.2.14

(207) Pf(Wr® Lp) = PI(VRR; LL&R, L")

where Ly := wé/z ®@ W CV (so Ly is a Lagrangian c-lattice in V') and the

Lagrangian d-lattice L C V&R is defined as follows. The point v € M§ (R)
is a quadruple («, F,~, f) where o, F, v have the same meaning as in

2.8.4 (in our special case G = SO(W)) and f is an isomorphism between
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H(Spec R®K, a*Lp) and R@wéﬂ in the groupoid of square roots of RQwo.

Let I'y, have the same meaning as in 2.8.4. Then
~ Zo
L' := H (X @ R)\T'o,Wr ® Lg) C H(Spec ROK,a*Wr @ o L) —VR
(the isomorphism ¢ is induced by v and f).
Taking (207) into account we see that constructing (206) is equivalent to

defining an isomorphism
(208) Pf(VOR; L, ® R, L") = Pf(V®R; Ly ® R, L").

The group ind-scheme Aute O x SO(W ® K) acts on V' in the obvious way,
and it is easy to see that LY = gL“. By (166) the L.h.s. of (208) is inverse to
(M ® R)r,_ whereM is the Clifford module CI(V)/Cl(V)L4 and L_ := L*.
So it remains to construct an isomorphism (M ® R);, — (M ®@R)g,_. We

define it to be induced by the action®) of § on M @ R. O
4.4. Half-forms on Bung.

4.4.1. Let G be semisimple. Fix a G-invariant non-degenerate symmetric
bilinear form on g. Set n := dimg and write SO, instead of SO(g).
The adjoint representation G — SO(g) induces a morphism f : Bung —
Bungo,. For £ € w'/?(X) set N, := f*Pf, where Pf is the line bundle
from 4.3.1; so the fiber of \/; over F € Bung equals Pf(gr®L)@Pf(gL)% 1.

The isomorphism (189) induces an isomorphism

(209) AP =k

1

Here Whiung

is the normalized canonical bundle (146); according to 2.1.1
the fiber of w%unc over F € Bung equals det RI'(X, gr) ® (det RI'(X,g ®
O X))®_1-

—~ —

“JRecall that g is an R-point of Auts O x SO,(K) = Auts O x SO(W ® K). By the
definition of SO, (K) it acts on M. The group ind-scheme Aut; O acts on (V, L) and

therefore on M.
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4.4.2. Consider the functor
(210) N w2(X) — (W)Y (Bung),

L — XN.. By 43.10 X is affine with respect to the Picard functor

7 : pators(X) — pgtors(Bung) that sends a po-torsor £ on X to £, :=

the pullback to Bung of the torsor Egp i on Bungo,, .

4.4.3. Proposition. ' = ¢ where ¢’ is the composition of the functor
pa tors(X) — Ztors(X) induced by (56) and the functor ¢ : Z tors(X) —
oo tors(Bung) constructed in 4.1.1-4.1.4. Here Z = m1(G)" =the center of
LG (see the Remark from 4.1.1).

Assuming the proposition we define a canonical f-affine functor
(211) A Ztorsg(X) — peo torsg(Bung)

by €L +— Aep i= Lle - N, £ € Ztors(X), £ € w'/?(X). (Attention:
normalization problem!!!777)

To prove Proposition 4.4.3 notice that 7' is the functor (152) corresponding
to the extension of G by pg induced by the spinor extension of SO(g).
Therefore ¢ is the composition of £ : Z tors(X) — i tors(Bung) and the
v

functor ug tors(X) — Z tors(X) induced by the morphism po — Z = m1(G)
dual to m1(G) — m(SO(g)) = Z/27Z. So it suffices to prove the following.

4.4.4. Lemma. The morphism m1(G) — m1(SO(g)) = Z/27Z is dual to the
morphism (56) for the group *G.

Proof. We have the canonical isomorphism f : P/Pg — Hom(m1(G)(1), ftoo)
where Pg is the group of weights of G and P is the group of weights of its
universal covering é; a weight A\ € P is a character of the Cartan subgroup
H C G and f()) is its restriction to 71(G)(1) C H. Let M be a spinor rep-
resentation of so(g). Then G acts on M and 71 (G)(1) C G acts according to
some character x € Hom(m (G)(1), ptoo). According to the definition of (56)
(see also the definition of \# in 3.4.1) the lemma just says that x = f(p)

where p € P is the sum of fundamental weights.
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Let b C g be a Borel subalgebra. Choose a b-invariant flag 0 C V; C
... C V, = g such that dim V}, = k, Vk} = V,_k, and b is one of the V. Let
b’ be the stabilizer of this flag in so(g). This is a Borel subalgebra of so(g)
containing b. Let m € M be a highest vector with respect to b’. Then Cm
is b-invariant and the corresponding character of b equals one half of the

sum of the positive roots, i.e., p. So x = f(p). O

Remark.  According to Kostant (cf. the proof of Lemma 5.9 from [Ko61])
the g-module M is isomorphic to the sum of 2["/2 copies of the irreducible

g-module with highest wight p (where r is the rank of g).

4.4.5. Our construction of (211) slightly depends on the choice of a scalar
product on g (see 4.4.1). Since there are several “canonical” scalar products
on g the reader may prefer the following version of (211).

To simplify notation let us assume that G is simple. Then the space of
invariant symmetric bilinear forms on g is 1-dimensional. Denote it by (.
Choose a square root of 3, i.e., a 1-dimensional vector space 3%/2 equipped
with an isomorphism /2 ® gY/2 =5 3. So g ® /2 carries a canonical
bilinear form. Consider the representation G — SO(g ® £'/2) and then
proceed as in 4.4.1-4.4.3 (e.g., now the fiber of X, over F € Bung equals
Pf(gr ® L® '/?) @ Pf(g® L ® £1/2)®~1). The functor (211) thus obtained
slightly depends on the choice of 3'/2. More precisely, —1 € Aut 3%/2 acts
on X, and therefore on Ay, M € Ztorsg(X), as multiplication by (—1)?

where p : Bung — Z/27 is the composition
Bung — mo(Bung) = m1(G) — 71 (SO(g)) = Z/2Z.
Do we want to consider Ays as a SUPER-sheaf??!

4.4.6. We have associated to £ € Ztorsg(X) a line bundle Az on Bung
(see 4.4.1-4.4.3). For z € X denote by Az, the pullback of Az to Bung ,.

P

In 4.4.7-4.4.10 we will define a central extension G(K;), of G(K) that acts

P

on Azz. In 4.4.11-4.4.13 we consider the Lie algebra of G(K),.
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4.4.7. Let O, K and wp have the same meaning as in 4.3.3. Fix a square

root L of wo. Then we construct a central extension of group ind-schemes

(212) 0—-Gp—GK),—GK)—0

as follows. L defines the central extension (196). Fix a non-degenerate
invariant symmetric bilinear form* on g and write SO,, instead of SO(g),
n := dimg. We define (212) to be the central extension of G(K) opposite
to the one induced from (196) via the adjoint representation G — SO(g) =
SO,,. The extension (212) splits over G(O).

—_—

Remark. In the case G = SO, our notation is ambiguous: G(K) #

—_——

SO, (K). Hopefully this ambiguity is harmless.

4.4.8. Let £ € w'/?(X), 2 € X. According to 4.4.7 the restriction of £
to Spec O, defines a central extension of G(K,), which will be denoted by

~——

G(Ky;)c. Denote by A7, the pullback to Bung , of the line bundle A}, from
4.4.1. It follows from 4.3.7 that the action of G(K;) on Bung, lifts to a

P

canonical action of G(K,), on X.. The subgroup G,, C G(K,), acts on

X7 in the natural way (see the definition of G(K3), in 4.4.7 and the last

sentence of 4.3.7). The action of G(O;) C G(Ky), on A, is the obvious

one.
4.4.9. In 4.4.7 we defined a functor
(213) w'/2(0) — {central extensions of G(K) by G,,}

where w!'/2(0) is the groupoid of square roots of wp. The Lh.s. of (213)
is a uo-category in the sense of 3.4.4. The r.h.s. of (213) is a Z-category,
Z :=m(G)Y = Hom(m(G),G,,). Indeed, the coboundary morphism*)

(214) G(K) — HYK,n$(Q)) = m1(G) = 2V

“nstead of fixing the form on g the reader can proceed as in 4.4.5.

“)A priori (214) is a morphism of abstract groups, but according to the Remark from

4.1.7 it is, in fact, a morphism of group ind-schemes. See also 4.5.4.
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induces a morphism®*
(215) Z — Hom(G(K),Gy,) ,

i.e., a Z-structure on the r.h.s. of (213). Using the morphism py — Z
defined by (56) we consider the r.h.s. of (213) as a ug-category. Then (213)
is a po-functor (use 4.3.4, Remark (ii) from 4.3.4, and 4.4.4). So by 3.4.4
the functor (213) yields a Z-functor

(216) Z torsp(O) — {central extensions of G(K) by G,,} .

The central extension of G(K) corresponding to £ € Z torsy(O) by (213)

P

will be denoted by G(K),. The extension

(217) 0—>Gm—>5(\f_(/)£—>G(K)—>O
splits over G(O).
Remarks

(i) According to 3.4.7 (i) the Z-structure on the r.h.s. of (213) yields a

Picard functor
(218) Z tors(O) = Z tors — {central extensions of G(K) by G,,} .

Explicitly, (218) is the composition of the canonical equivalence

(219) {trivial extensions of Z¥ by G,,} = Z tors

an extension — the Z-torsor of its splittings

and the functor from the Lh.s. of (219) to the r.h.s. of (218) induced
by (214). In other words, (218) is the functor £ — G(K), from 4.1.8.
(ii) By 3.4.7 (iv) the functor (216) is affine with respect to the Picard

functor (218).

“Jn fact, an isomorphism (see 4.5.4)
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4.4.10. Let £ € Ztorsp(X). According to 4.4.9 the image of £ in
Z torsg(O,) defines a central extension of G(K,), which will be denoted

e~ —

by G(K;),. Denote by Az, the pullback of Az to Bung,. The action of

G(K,) on Bung, lifts to a canonical action of G(K,), on Az, (use 4.3.7-

4.3.9, 4.1.8, and the Remarks from 4.4.9). G(O;) x G,,, C G(K,), acts on

Azz in the obvious way.

4.4.11. Proposition. The Lie algebra extension corresponding to (217) is the

extension
0—-C— m g K —0
from 2.5.1.

Proof. The Lie algebra extension corresponding to (217) does not depend
on L € Ztorsg(O), so instead of (217) one can consider (212) and finally
(194). So it is enough to use the Kac-Peterson—Frenkel theorem which says

that the Lie algebra extension

P

(220) 0—C—onp(K)—o0,(K)—0

corresponding to (194) is defined by the cocycle (u,v) — 3 ResTr(du,v),
u,v € on(K). In fact, to use [KP] or Proposition 1.3.11 from [Fr81] one

—_~—

has to use the following characterization of o, (K) (which does not involve

—_~—

the group O, (K)): let V have the same meaning as in 4.3.3 and let M be

an irreducible discrete module over C1(V'), then one has a representation of

—_— P

on(K) in M compatible with the action of 0,(K) on Cl(V) and such that

—_—~—

1 € C C o,(K) acts on M identically. O]

4.4.12. Let Az and Az, have the same meaning as in 4.4.10. According to
4.4.10 and 4.4.11 the action of g ® K, on Bung . lifts to a canonical action

of g ® K, on Az, whose restriction to C x (g® O,) C g ® K, is the obvious
one; in particular 1 € C C g ® K, acts as multiplication by 1.
A is equipped with an isomorphism AZ*" -~ (w%u ng) 2" for some n # 0,

so the sheaf of differential operators acting on Az is D’. Therefore according
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to 1.2.5 the action of g ® K, on A, induces a canonical morphism
he @ 30 — I'(Bung, D').
Clearly h; does not depend on L € Ztorsyg(X).

4.4.13. In this subsection we prove that the h, from 4.4.12 coincides with
the h, from 2.5.4. The reader can skip this proof and simply forget the old
definition of h, (it was introduced only to avoid the discussion of square
roots of wpyn, in Section 2).

To prove that the two definitions of h, are equivalent it suffices to show
§

Bung induces

that if £ is a square root of wx then the isomorphism )\%2 —w
a g@?x—equivariant isomorphism between their pullbacks to Bung .. This
can be proved directly, but in fact it cannot be otherwise. Indeed, the
obstruction to g/@_)\?x—equivariance is a 1-cocycle g@\gx — HO (Bung 4, O).
Since Hom(g/@_)\?x, C) = 0 it is enough to show that every regular function f
on Bung, is locally constant. According to 2.3.1 Bung , is the inverse limit
of Bung nz, n € N. Clearly f comes from a regular function on Bung ,, for

some n. So it suffices to prove the following lemma.

Lemma. Every regular function on Bung ,; is locally constant.

Proof. Choose y € X\{x} and consider the scheme M parametrizing G-
bundles on X trivialized over na and the formal neighbourhood of y (here
the divisor nz is considered as a subscheme). G(K,) acts on M and a regular
function f on Bung g is a G(Oy)-invariant element of H°(M, Oy). Clearly
HO(M,Oyy) is an integrable discrete g ® Ky-module. It is well known and
very easy to prove that a (g ® O,)-invariant element of such a module is
(g ® Ky)-invariant. So f is (g ® K, )-invariant. Since the action of g ® K,

on M is (formally) transitive f is locally constant. O

Remark.  The above lemma is well known. A standard way to prove it

would be to represent Bung p, as I'\G(K,)/G(O,) for some I' C G(K,) (see
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[La-So] for the case n = 0) and then to use the fact that a regular function

on G(K,)/G(Oy) is locally constant.

4.4.14. Now we will finish the proof of the horizontality theorem 2.7.3 (see
2.8.3 — 2.8.5 for the beginning of the proof).

Let M be the scheme over X whose fiber over x € X is Bung,. Fix
L e w'/?(X) and L£'°° € w!/2(0) (i.e., L is a square root of wx, £ is a
square root of wp). Then one has the scheme X' defined in 4.3.16. Denote
by M4 the fiber product of M and X4 over X. The semidirect product
Auty O x G(K) acts on M4 (cf. 4.3.16).

One has its central extension Auty O X 6(7(/) where C/}(xK/) is the central
extension (212) corresponding to £1°¢ and Auts O = Aut(O, £1°°) acts on
E(\I_(/) = 5(}_(/) rloc Dy transport of structure. Denote by A} the pullback to
M4 of the Pfaffian line bundle N from 4.4.1. Since Auty O acts on M3
as on a scheme over Bung one gets the action of Auto O on A}. On the

other hand, G(K) acts on A} - :=the restriction of A} to the fiber of M3

over T € XJ'. Indeed, this fiber equals Bung, where z is the image of

Z in X, and by 4.4.8 the central extension G(K;), acts on A\, = Ap .
This extension depends only on £, :=the pullback of £ to SpecO,. Since

7 defines an isomorphism (O, L;) — (O, £°°) we get an isomorphism

e~

G(K,); — G(K) and therefore an action of G(K) on A} -. As explained
in 2.8.5, to finish the proof of 2.7.3 it suffices to show that

—~—

i) the action of G(K') on X} - corresponding to various T € X4' come from

an (obviously unique) action of G(K) on A},
ii) this action is compatible with that of Aute O (i.e., we have, in fact, an

action of Auty; O x G(K) on A\}).

This follows immediately from 4.3.17.

4.4.15. In this subsection and the following one we formulate and prove a
generalization of statements i) and ii) from 4.4.14, which will be used in the

proof of the main result of this work (Theorem 5.4.5). The generalization



HITCHIN’S INTEGRABLE SYSTEM 171

is obvious (w!/2(X) is replaced by Ztorss(X), etc.), and the reader can
certainly skip these subsections for the moment.

Fix £ € Ztorsg(X) and L£'°° € Ztorsg(O). Denote by X3 the
etale Z-covering of X’ such that the preimage in X2(R) of a point of
X"(R) corresponding to a morphism « : Spec(R®0) — X is the set of
isomorphisms EIRE’C =, «*L in the groupoid® Z torsg(R®O), where ££C
is the pullback of £'°° to Spec R®O. The group ind-scheme Auty O =
Aut(O, £°°) from 4.6.6 acts on X} by transport of structure. Denote by M2
the fiber product of M and X% over X. Let A} denote the pullback to M7 of
the line bundle A, defined in 4.4.3. The semidirect product Autz O x G(K)

acts on M7%. One has its central extension Autz O x G(K), where G(K) is

the central extension (217) corresponding to £!°¢ and Autz O = Aut(O, £!°°)

—_—

acts on G(K) = G(K) 1oc by transport of structure. Let us lift the action

P

of Autz O x G(K) on M} to an action of Autz O x G(K) on \).

Just as in 4.4.14 one defines the action of Autz O on )\2 and the action

P

of G(K) on A} . :=the restriction of A\ to the fiber of M7 over T € Xz

4.4.16. Proposition.

P

(i) The actions of G(K) on Aj ; corresponding to various ¥ € X7 come
from an (obviously unique) action of G(K) on Aj.
(ii) The actions of Autz O and G(K) on X} define an action of Autz O x

G(K).

Proof. Represent £ € Ztorsy(X) as L = £ - Lo, € € Ztors(X), Ly €
w!/2(X). By definition, A\s = lg ® A¢, (see 4.1.4 or 4.1.6 for the definition
of the pso-torsor lg on Bung).

Consider £!°¢ as an object of w!/2(0) (this is possible because both
7 torsg(0O) and w'/?(0) have one and only one isomorphism class of objects).

Using Lo and £!°°¢ construct X4, M3, and A2, (see 4.4.14).

*)Here it is convenient to use the definition Z torsg from 3.4.5
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Consider € as a Z-covering & — X. Set X{ 1= Exx XN, ML = Exx M",
where X and M” have the same meaning as in 2.6.5 and 2.8.3. Denote by
12 the pullback of lg to MZ.

Set Mg, = & xx Mj. One has the etale coverings M, — My,
MQQ — M, and p : MgA,2 — M}. Clearly p*A} is the tensor product
of the pullbacks of Iz and A} to Mg',. Now consider g and Aj separately.

The semidirect product AutO x G(K) acts on M{, and the action of
Aut O on M lifts canonically to its action on 12 (cf. 4.4.14 or 2.8.5). G(K)
acts on the restriction of [2 to the fiber over each point of X2 (see 4.1.7). It
is easy to see that these actions come from an action of Aut O x G(K) on [3.
On the other hand, by 4.4.14 we have a canonical action of Auts O x Cj(\l?)
on A7 .

e~

So we get an action of Auty O x G(K) on p*A;, which is compatible with

P

the action of Auto O on A} and with the action of G(K) on A} -, T € XJ.

P

Since p is etale and surjective the action of Auty O x G(K) on p*A\} descends
to an action of Auty O x G(K) on Aj. Since Autyz O is generated by Auty O
and Z it remains to show that the action of Z C Autz O on A} is compatible

with that of G(K'). This is clear because the actions of Z and G(K) on A} -

are compatible for every T € X2. O

4.5. The affine Grassmannian. The affine Grassmannian GR is the fpqc
quotient G(K)/G(O) where O = C[[t]], K = C((t)). In this section we recall
some basic properties of GR. In 4.6 we construct and investigate the local
Pfaffian bundle; this is a line bundle on GR.

The affine Grassmannian will play an essential role in the proof of our
main theorem 5.2.6. However the reader can skip this section for the
moment.

In 451 — 7 G denotes an arbitrary connected affine algebraic
group. Connectedness is a harmless assumption because G(K)/G(0) =

GY(K)/G°(0O) where G° is the connected component of G.
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4.5.1. Theorem.
(i) The fpgc quotient G(K)/G(O) is an ind-scheme of ind-finite type.
(ii) G(K)/G(0) is formally smooth.*)
(iii) The projection p : G(K) — G(K)/G(O) admits a section locally for
the Zariski topology.
(iv) G(K)/G(O) is ind-proper if and only if G is reductive.

(v) G(K), or equivalently G(K)/G(O), is reduced if and only if Hom(G, G,,) =

0.

Remark. The theorem is well known. The essential part of the proof
given below consists of references to works by Faltings, Beauville, Laszlo,

and Sorger.

Proof. (i) and (iv) hold for G = GL,. Indeed, there is an ind-proper ind-
scheme Gr(K"™) parametrizing c-lattices in K™ (see 7.11.2(iii) for details).
GL,(K)/GL,(O) is identified with the closed sub-ind-scheme of Gr(K™)
parametrizing O-invariant c-lattices. To prove (i) and (iv) for any G we

need the following lemma.

Lemma. Let G7 C G9 be affine algebraic groups such that the quotient
U := G1 \ G2 is quasiaffine, i.e., U is an open subscheme of an affine scheme
Z. Suppose that the fpqc quotient G2(K)/G2(0O) is an ind-scheme of ind-
finite type. Then this also holds for G1(K)/G1(O) and the morphism

(221) G1(K)/G1(0) — G2(K)/G2(0)
is a locally closed embedding. If U is affine then (221) is a closed embedding.

The reader can easily prove the lemma using the global interpretation of
G(K)/G(O) from 4.5.2. We prefer to give a local proof.
Proof. Consider the morphism f : G1(K) — Z(K). Clearly Z(O) is a
closed subscheme of Z(K), and U(O) is an open subscheme of Z(O). So
Y := f~4U(0)) is a locally closed sub-ind-scheme of Go(K); it is closed if

*)The definition of formal smoothness can be found in 7.11.1.
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U is affine. Clearly Y - G2(O) =Y, so Y is the preimage of a locally closed
sub-ind-scheme Y’ C G2(K)/G2(0); if U is affine then Y’ is closed. Since

G1(K) C Y we have a natural morphism

(222) Gi(K)—Y'.

We claim that (222) is a G1(O)-torsor (G1(O) acts on G1(K) by right
translations) and therefore G1(K)/G1(0) = Y'. To see that (222) is a
G1(0)-torsor notice that the morphism Y — Y’ is a Ga(O)-torsor, the
morphism ¢ : Y — U(O) = G1(0) \ G2(0) is G2(O)-equivariant, and
G1(K) = ¢~ 1(€) where € € G1(O) \ G2(0O) is the image of e € G3(0). [

Let us prove (i) and (iv) for any G. Choose an embedding G — GL,,. If
G is reductive then GL, /G is affine, so the lemma shows that G(K)/G(O)
is an ind-proper ind-scheme. For any G we will construct an embedding
i: G— G :=GL, x Gy, such that G'/i(G) is quasiaffine; this will imply
(i). To construct i take a GL,-module V such that G C GL,, is the stabilizer
of some 1-dimensional subspace I C V. The action of GG in [ is defined by
some x : G — Gy,. Definei: G — G’ := GL, x G,, by i(g) = (g,x(9)71).
To show that G’ /i(G) is quasiaffine consider V as a G’-module (A € G, acts
as multiplication by A) and notice that the stabilizer of a nonzero v € [ in
G’ equals i(G). So G'/i(G) ~ G'v and G'v is quasiaffine.

Let us finish the proof of (iv). If G(K)/G(O) is ind-proper and G’ is
a normal subgroup of G then according to the lemma G'(K)/G’'(O) is also
ind-proper. Clearly G,(K)/G,(O) is not ind-proper. Therefore G(K)/G(O)
is ind-proper only if G is reductive.

To prove (iii) it suffices to show that p : G(K) — G(K)/G(O) admits a
section over a neighbourhood of any C-point x € G(K)/G(O) (here we use
that C-points are dense in G(K)/G(O) by virtue of (i)). Since p is G(K)-
equivariant we are reduced to the case where x is the image of e € G(K).

So one has to construct a sub-ind-scheme I' C G(K) containing e such that
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the morphism
(223) I'xGO)—G(K), (v.9)—9

is an open immersion. According to Faltings [Fal94, p.350-351] the
morphism (223) is an open immersion if the set of R-point of I' is defined

by
[(R) = Ker(G(R[t™1])-G(R)) € G(R((t))) = G(ROK)

where f is evaluation at t = oo. The proof of this statement is due to
Beauville and Laszlo (Proposition 1.11 from [BLa94]). It is based on the
global interpretation of G(K)/G(O) in terms of X = P! (see 4.5.2) and on
the following property of G-bundles on P': for a G-bundle F on S x P! the
points s € S such that the restriction of F to s x P! is trivial form an open
subset of S (indeed, H!(P', O ® g) = 0, g := Lie G).

Let us deduce® (ii) from (iii). Since G(K) is formally smooth it
follows from (iii) that each point of G(K)/G(O) has a formally smooth
neighbourhood. Since G(K)/G(O) is of ind-finite type this implies (ii).

It remains to consider (v). G(O) is reduced. So G(K) is reduced
if and only if G(K)/G(O) is reduced. Laszlo and Sorger prove that
if Hom(G,G,,) = 0 then G(K)/G(O) is reduced (see the proof of
Proposition 4.6 from [La-So|); their proof is based on a theorem of
Shafarevich. If Hom(G,G,,) # 0 there exist morphisms f : G, — G
and x : G — Gy, such that xf = ¢,, n # 0, where @,(\) := A\". The
image of the morphism G,,(K) — G,,(K) induced by ¢,, is not contained
in Gy, (K)red, so G(K) is not reduced. O

4.5.2. Let X be a connected smooth projective curve over C, z € X(C), O,
the completed local ring of z, and K, its field of fractions. Then according

to Beauville — Laszlo (see 2.3.4) the fpqc quotient G(K,)/G(Oz) can be

“In fact, one can prove (ii) without using (iii).
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interpreted as the moduli space of pairs (F,~) consisting of a principal G-
bundle F on X and its section (=trivialization) v: X \ {z} — F: to (F,7)
one assigns the image of /v, in G(K,)/G(O,) where 7, is a section of F
over Spec O, and /v, denotes the element g € G(K,) such that v = g7,
(we have identified G(K,)/G(O,) with the moduli space of pairs (F,7) at
the level of C-points; the readers can easily do it for R-points where R is

any C-algebra).

4.5.3. Let us recall the algebraic definition of the topological fundamental
group of G. Denote by 7§*(G) the fundamental group of G in Grothendieck’s
sense. A character f: G — G, induces a morphism 7$*(G) — 7$(G,,,) =
Z(1) and therefore a morphism f, (@) (—1) — Z. Denote by m1(G)
the set of a € (7¢%(G))(—1) such that fi(a) € Z for all f € Hom(G,G,,).
We consider 71 (G) as a discrete group. In fact, 71 (G) does not change if G
is replaced by its maximal reductive quotient. For reductive G one identifies
7m1(G) with the quotient of the group of coweights of G modulo the coroot
lattice.

For any finite covering p : G — G one has the coboundary map G(K) —
HY(K,A) = A(-1), A := Kerp. These maps yield a homomorphism
G(K) — (m$%(@))(—1). Its image is contained in m(G). So we have

constructed a canonical homomorphism
(224) v: GK)— m(G)

where G(K) is understood in the naive sense (i.e., as the group of K-points
of G or as the group of C-points of the ind-scheme G(K)). The restriction
of (224) to G(O) is trivial, so (224) induces a map

(225) G(K)/G(0O) — m(G)

where G(K)/G(O) is also understood in the naive sense.
Now consider G(K') and G(K)/G(O) as ind-schemes. The set of C-points
of G(K)/G(O) is dense in G(K)/G(O), and the same is true for G(K).
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4.5.4. Proposition.

(i) The maps (224) and (225) are locally constant.

(ii) The corresponding maps

(226) m0(G(K)) — m(G)

(227) mo(G(K)/G(0)) — m(G)
are bijective.

Proof. We already proved (i) using a global argument (see the Remark
at the end of 4.1.7). The same argument can be reformulated using the
interpretation of G(K;)/G(Oy) from 4.5.2: the map (225) equals minus the
composition of the natural map G(K;)/G(O,;) — Bung and the “first Chern
class” map ¢ : mp(Bung) — m1(G). For a local proof of (i) see 4.5.5.

Now let us prove (ii). The map mo(G(K)) — mo(G(K)/G(O)) is bijective
(because G is connected). So it suffices to consider (226). Since G can be
represented as a semi-direct product of a reductive group and a unipotent
group we can assume that G is reductive. Fix a Cartan subgroup H C G. We
have mo(H(K)) = m1(H) and the composition mo(H(K)) — mo(G(K)) —
7m1(G) is the natural map m (H) — 71(G), which is surjective. So (226)
is also surjective. The map mo(H (K)) — mo(G(K)) is surjective (use the
Bruhat decomposition for the abstract group G(K)). Therefore to prove the
injectivity of (226) it suffices to show that the kernel of the natural morphism
f:m(H(K)) — 71 (G) is contained in the kernel of 7o(H (K)) — mo(G(K)).
Since Ker f is the coroot lattice it is enough to prove that for any coroot
v : G — H the image of G,,(K) in G(K) belongs to the connected
component of e € G(K). A coroot G,, — H extends to a morphism
SL(2) — G, so it suffices to notice that SL(2, K) is connected (because
any matrix from SL(2,K) can be represented as a product of unipotent

matrices). O

In the next subsection we give a local proof of 4.5.4(i).
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4.5.5. Lemma. Let M = Spec R be a connected affine variety, A a finite
abelian group, o € HL(Spec R((t)),A). For x € M(C) denote by a(z)
the restriction of a to the fiber of Spec R((t)) — SpecR over z, so
a(z) € HY (SpecC((t)), A) = A(—1). Then a(x) € A(—1) does not depend

on xr.

Proof. It suffices to show that for any smooth connected M’ and any
morphism M’ — M the pullback of & to M'(C) is constant®. So we can
assume that M is smooth. Set V := Spec R|[[t]], V' := Spec R((t)). We can
assume that A = p,. Then « corresponds to a pu,-torsor on V', i.e., a line
bundle A on V' equipped with an isomorphism v : A®™ =5 Oy Since V is
regular A extends to a line bundle Aon V. Then 1 induces an isomorphism

A 2, ik Oy for some k € Z. Clearly a(z) € Z/nZ is the image of k. [

Here is a local proof of 4.5.4(i). Since G(K)/G(O) is of ind-finite type
it suffices to prove that for every connected affine variety M = Spec R and
any morphism f : M — G(K) the composition M(C) — G(K) — m1(G)
is constant. For any finite abelian group A an exact sequence 0 — A —
G — G — 0 defines a map 71 (G) — A(—1) and it is enough to show that
the composition M (C) — G(K) — m(G) — A(—1) is constant. To prove
this apply the lemma to o = ¢*3 where ¢ : Spec R((t)) — G corresponds
to f:Spec R — G(K) and 3 € HL (G, A) is the class of G considered as an
A-torsor on G.

Remark. In fact, one can prove that for every affine scheme M = Spec R

over C the “Kiinneth morphism”
(228)  He (M, A) @ HO(M,Z) @ Hey(Spec C(()), A) — Hey (M((1)), A),
M((t)) := Spec R((t)),

is an isomorphism (clearly this implies the lemma). A similar statement

holds for any ring R such that the order of A is invertible in R.

“)In fact, it is enough to consider only those M’ that are smooth curves.
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4.5.6. Proposition. Let A C G be a finite central subgroup, G’ := G/A.

(i) The morphism G(K)/G(0) — G'(K)/G'(O) induces an isomorphism
between G(K)/G(O) and the union of some connected components of
G'(K)/G'(0).

(ii) The morphism G(K) — G'(K) is an etale covering.

Remark. By 4.5.4 the components mentioned in (i) are labeled by elements

of Im(m1(G) — m1(G")). The same is true for the connected components of

the image of G(K) in G'(K).

Proof. Clearly (i) and (ii) are equivalent.

Let us prove (i) under the assumption of semisimplicity of G' (which
is equivalent to semisimplicity of G’). In this case the morphism f :
G(K)/G(O) — G'(K)/G'(0) is ind-proper by 4.5.1(iv). By 4.5.4(i) the
fibers of f over geometric points*) of components C' C G'(K)/G'(O) such
that f~1(C) # 0 contain exactly one point, and it is easy to see that
these fibers are reduced. By 4.5.1(v) G'(K)/G'(O) is reduced. So in the
semisimple case (i) is clear.

Now let us reduce the proof of (ii) to the semisimple case. We can
assume that A is cyclic. It suffices to construct a morphism p from G
to a semisimple group G; such that p|4 is injective and p(A) C G is
central (then the morphism G(K) — G'(K) is obtained by base change from
G1(K) — GY{(K), G| :== G1/p(A)). To construct Gy and p one can proceed
as follows. Fix an isomorphism x : A — p,,. Let V be a finite-dimensional
G-module such that Z acts on V' via x. Denote by W), the direct sum of p
copies of V and ¢ copies of Sym™ ! V*. If p-dim V = g(n—1)-dim Sym™ ' V/
then one can set Gy := SL(WW),) (indeed, the image of GL(V') in GL(Wp,)
is contained in SL(Wp,). O

Remarks
“)The statement for C-points follows immediately from 4.5.4(i). Since 4.5.4 remains
valid if C is replaced by an algebraically closed field £ D C the statement is true for

E-points as well.
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(i) Proposition 4.5.6 is an immediate consequence of the bijectivity of
(228).
(ii) It is easy to prove Proposition 4.5.6 using the global interpretation of

G(K)/G(O) from 4.5.2.

4.5.7. Suppose that G is reductive. Denote by G,q the quotient of G
by its center. Set T := G/|G,G]|, G' := Gaq9 x T. Then G' = G/A
for some finite central subgroup A C G. So by 4.5.6 G(K)/G(O) can be
identified with the union of certain connected components of G'(K)/G'(O) =
Gad(K)/Gaa(O) x T(K)/T(O).

The structure of T'(K)/T(O) is rather simple. For instance, the reduced
part of G,,(K) /G, (O) is the discrete space Z and the connected component
of 1 € Gy (K)/G(O) is the formal group with Lie algebra K/O.

4.5.8. From now on we assume that G is reductive and set GR :=
G(K)/G(O).

Recall that G(O)-orbits in GR are labeled by dominant coweights of G or,
which is the same, by P, (*G) := the set of dominant weights of “G. More
precisely, x € P, (YG) defines a conjugacy class of morphisms v : G,, — G
and, by definition, Orb,, is the G(O)-orbit of the image of v(7) in GR where
7 is a prime element of O (this image does not depend on the choice of ).
Clearly Orb, does not depend on the choice of v inside the conjugacy class,
so Orb,, is well-defined. According to [IM] the map x + Orb, is a bijection
between P, (“G) and the set of G(O)-orbits in GR. It is easy to show that

(229) dim Orb,, = (x, 2p)

where 2p is the sum of positive roots of G.

Remark.  Clearly Orb, is Aut® O-invariant.

4.5.9. We have the bijection (227) between mo(GR) and 7 (G). Let Z
be the center of the Langlands dual group “G. We identify m1(G) with
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ZV .= Hom(Z,G,,) using the duality between the Cartan tori of G and G

So the connected components of GR are labeled by elements of ZV.

Remark.  The connected component of GR containing Orb, corresponds

to xz € Z" where xz is the restriction of y € PT(*Q) to Z.

4.5.10. There is a canonical morphism « : us — Z. If G is semisimple we
have already defined it by (56). If G is reductive this gives us a morphism
po — Z' where Z' is the center of the commutant of “G; then we define «
to be the composition puy — 7' — Z.

According to 4.4.4 the dual morphism oV : 7 (G) — Z/2Z is the
morphism of fundamental groups that comes from the adjoint representation
G — SO(gss), 9ss == [9, 9]

The composition of (227) and " defines a locally constant parity function
(230) p: GR — Z/27.

We say that a connected component of GR is even (resp. odd) if (230) maps
it to 0 (resp. 1).

4.5.11. Proposition. All the G(O)-orbits of an even (resp. odd) component

of GR have even (resp. odd) dimension.

Proof. Let z = gG(O) € GR. Using the relation between a¥ and the adjoint
representation (see 4.5.10) as well as Remarks (ii) and (iii) from 4.3.4 we see

that x belongs to an even component of GR if and only if
(231) dim gs © O/ ((gss ® 0) N Adg(gss ® O))
is even. But (231) is the dimension of the G(O)-orbit of x. O

Here is another proof. Using (229) and the Remark from 4.5.9 we see
that the proposition is equivalent to the formula xz(a(—1)) = (—1)&27),
which is obvious because according to (56) « : pug — Z is the restriction of

the morphism A\ : G,,, — H C G corresponding to 2p.
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4.5.12. The following properties of G(O)-orbits in GR will not be used in
this work but still we think they are worth mentioning.

The closure of Orby, is the union of Orb,s, X’ < x. Indeed, if p : G —
GL(V) is a representation with lowest weight A then for g € Orb, one has
p(g) € tXN End(V ® 0), p(g) ¢ tXNT1 End(V ® O). So if Orb,, C Orb,,
then (x — x’,A) < 0 for every antidominant weight A of G and therefore
X — X’ is a linear combination of simple coroots of G with non-negative
coefficients; by 4.5.4(i) these coefficients are integer, so x' < x. On the
other hand, a GL(2) computation shows that the set of weights x’ of “G
such that Orb,, C Orb,, is saturated in the sense of [Bour75], Ch. VIII, §7,
no. 2. So Proposition 5 from loc.cit shows that Orb,, C Or—bx for every
dominant x’ such that ¥’ < .

The above description of Or—bx implies that Orb, is closed if and only
if x is minimal. If G is simple then x is minimal if and only if x = 0
or x is a microweight of “G (see [Bour68], Ch. VI, §2, Exercise 5). So
on each connected component of GR there is exactly one closed G(O)-
orbit (use 4.5.4 and the first part of the exercise from loc.cit). If Orb, is
closed it is projective, so in this case G(O) acts on Orb,, via G = G(0/tO)
and Orb, is the quotient of G' by a parabolic subgroup. In terms of 9.1.3
Orby = orb, = G/P, .

If G is simple then there is exactly one x such that Orb, \ Orb, consists
of a single point*); this x is the coroot of g := Lie G corresponding to the
maximal root apax of g (see [Bour75], Ch. VIII, §7, Exercise 22). In this
case Orb, can be described as follows. Set V := g ® (m~!/0O) where m is
the maximal ideal of O. Denote by V the projective space containing V'
as an affine subspace. So V is the space of lines in V @ C; in particular
V* = g* ® (m/m?) acts on V preserving 0 € V. Denote by C the set of
elements of V that are G-conjugate to ga,., ® (m~1/0). This is a closed

subvariety of V. Its projective closure C' C V is V*-invariant because C is a

“)Of course, this point is the image of e € G(K).
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cone. It is easy to show that the morphism exp : C' — G(K)/G(O) extends
to an isomorphism f : C — Orb,. Clearly f is Aut® O-equivariant and
G-equivariant. The action of Ker(G(O) — G(O/m)) on C induced by its

action on Orb,, comes from the action of V* on C and the isomorphism
Ker(G(O/m?) — G(O/m)) = g@m/m? == V*

where the last arrow is induced by the invariant scalar product on g such

that (max, @max) = 2.

4.6. Local Pfaffian bundles. Consider the affine Grassmannian GR :=
G(K)/G(O) where O = C[[t]], K = C((t)). Set Z := Hom(m1(G),Gy,)
(by the Remark from 4.1.1 Z is the center of “G). In this subsection we
will construct and investigate a functor £ +— Ay = )\lﬁoc from the groupoid
Z torsg(O) (see 3.4.3) to the category of line bundles on GR. We call A, the
local Pfaffian bundle corresponding to L.

We recommend the reader to skip this subsection for the moment.

P

4.6.1. In 4.4.9 we defined a functor £ — G(K), from Ztorsg(O) to the
category of central extensions of G(K) by G,,. For £ € Z torsg(O) we have

the splitting G(O) — G(K'), and therefore the principal G,,-bundle

—_—

(232) G(K),/G(0) — G(K)/G(0) =GR .

4.6.2. Definition. Ay is inverse to the line bundle on GR corresponding to
the G,,-bundle (232).
Clearly Az depends functorially on £ € Z torsy(O).

—_~—

4.6.3. Remark. G(K), depends on the choice of a non-degenerate invariant

bilinear form on g (see 4.4.7). So this is also true for A..

4.6.4. Let € € GR denote the image of the unit e € G. Our A, is the
unique G(K),-equivariant line bundle on GR trivialized over € such that

e~

any ¢ € G, C G(K), acts on Az as multiplication by ¢ L.

follows from the equality Hom(G(O),G,,) = 0.

Uniqueness
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—_~—

4.6.5. By 4.4.11 the action of G(K'), on Az induces an action of g ® K on
Az such that 1 € C C gié?( acts as multiplication by —1. It is compatible
with the action of g ® K on GR by left infinitesimal translations.

4.6.6. The push-forward of (63) by the morphism (56) is an exact sequence
(233) 0—Z — AutzO — AutO — 0.

For any £ € Ztors(O) the exact sequence

(234) 0—Z2Z—Aut(O,L) — AutO — 0

can be canonically identified with (233). Here Aut(O, £) is the group ind-
scheme of pairs (o,¢), 0 € AutO, ¢ : L -~ 0,.L (the reader may prefer
to consider £ as an object of the category Z tors,(O) from 3.4.5). The
isomorphism between (233) and (234) is induced by the obvious morphism
Auty O := Aut(0,wy?) — Aut(O, £).

Autz O = Aut(O, L) acts on the exact sequence (217) by transport
of structure; the action of Autz O on G,, is trivial and its action on
G(K) comes from the usual action of AutO on G(K). The subgroup
G(0) C G(K), is Autz O-invariant.

4.6.7. It follows from 4.6.6 that the action of Aut O on GR lifts canonically
to an action of Autz O on the principal bundle (232) and the line bundle
Az. The action of Autz O on A,z induces an action of Der O = Lie Autz O

on \r.

4.6.8. The action of Z = Aut £ on the extension (217) comes from (215).

So Z acts on Ay via the morphism
(235) Z — H°(GR,O%R)

inverse to the composition of (215) and the natural embedding Hom(G(K), G,,) —
H°(GR,O%). Recall that mo(GR) = ZV (see 4.5.9), so z € Z defines
f2 1 m0(GR) — C* and (235) is the map z — f. L.
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4.6.9. Remark. (Do we need it 7?7). Consider the category of line bundles
on GR as a Z-category in the sense of 3.4.4, the Z-structure being defined
by (235). By 3.4.7 (i) we have a canonical Picard functor

(236) Z tors(O) = Z tors — {line bundles on GR}.

Explicitly, (236) assigns to £ € Z tors the E-twist of Ogr equipped with the
Z-action (235). By 3.4.7 (iv) the functor £ — Az, £ € Z torsp(O), is affine
with respect to the Picard functor (236).

4.6.10. The morphism « : ps — Z defined by (56) induces an action of
p2 on Az, L € Ztorsg(O). It defines a (Z/2Z)-grading on Az. In 4.5.10 we
introduced the notions of even and odd component of GR. According to
4.6.8 the restriction of the (Z/2Z)-graded bundle A to an even (resp. odd)

component of GR is even (resp. odd).
4.6.11. The functor
(237) Z torsg(O) — {line bundles on GR}, L +— Az

is a Z-functor in the sense of 3.4.4 provided the Z-structure on the r.h.s. of
(237) is defined by (235). Since Z torsg(O) is equivalent to w!'/2(0) @,, Z

(see 3.4.4) the functor (237) is reconstructed from the corresponding functor
(238) w'?(0) — {line bundles on GR}

where w!/2(0) is the groupoid of square roots of w(0). Since the extension
(212) essentially comes from the “Clifford extension” (193) it is easy to give
a Cliffordian description of (238). Here is the answer.

Let £ € w!'/?(0). We have fixed a nondegenerate invariant symmetric
bilinear form on g, so the Tate space V =V := L ®p (g ® K) carries a
nondegenerate symmetric bilinear form (see 4.3.3) and L:=L®g C V is a
Lagrangian c-lattice. Set M = M := Cl(V)/ Cl(V')L; this is an irreducible
(Z/2Z)-graded discrete module over C1(V'). We have the line bundle Pj; on
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the ind-scheme Lagr(V') of Lagrangian c-lattices in V' (see 4.3.2). We claim
that

(239) Ae = P,

where the morphism® ¢ : G(K)/G(O) — Lagr(V) is defined by ¢(g) :=

1

gLg™"; in other words

(240) the fiber of Az over g € G(K)/G(0) is M9L9™" =

{m € M¢|(gLg™') - m = 0}.
Indeed, the central extension (212) is opposite to the one induced from (193)
and therefore the action of O(V) on P, (see 4.3.2) induces an action of
CT(\I?)L on ¢*Pyy,. such that ¢c € Gy, C C/}_(\K/)E acts as multiplication by ¢~1;
besides, the fiber of ¢*Pys,. over € is C.

Clearly the isomorphism (239) is functorial in £ € w!'/2(0).

4.6.12. Remarks

(i) The line bundle Py from 4.3.2 is (Z/27)-graded. So both sides of (239)
are (Z/27Z)-graded. The gradings of both sides of (239) are induced by
the action of puo = Aut L (to prove this for the r.h.s. notice that the
(Z/2Z)-grading on Cl(V) is induced by the natural action of s on V).
Therefore (239) is a graded isomorphism.

(ii) According to 4.6.10 —1 € pus = Aut L acts on the r.h.s. of (239) as
multiplication by (—1)P where p is the parity function (230). This also
follows from the equality x = 6 (see the proof of Lemma 4.3.4) and
Remark (ii) at the end of 4.3.4.

4.6.13. We should think about super-aspects, in particular: what is the
inverse of a 1-dimensional superspace? (maybe this should be formulated in
an arbitrary Picard category; there may be troubles if it is not STRICTLY

commutative).

“)t is easy to show that ¢ is a closed embedding and its image is the ind-scheme of

A € Lagr(V) such that OA = A and £7' ®o A is a Lie subalgebra of g ® K.
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Consider a G(O)-orbit Orb, C GR, x € P(FG) (see 4.5.8). We will
compute Az, := the restriction of Az to Orb,, £ € Z torsy(O). By 4.6.4 Az
is G(O)-equivariant. The orbit Orb, is Aut® O-invariant and by 4.6.7 Az,
is AutOZ O-equivariant where Aut% O is the preimage of Aut’ O in Auty; O
(see (233)). Finally Az, is Z/2Z-graded (but in fact Az, is even or odd
depending on x; besides, the Z/2Z-grading can be reconstructed from the
action of Z C Aut% O.....). The groups G(O) and Aut} O also act on the
canonical sheaf worn, (Aut® O acts via Aut’ O). In 4.6.17-4.6.19 (?7?) we

will construct a canonical isomorphism
(241) ALx - WOorb, & (DE,X)_l

for a certain 1-dimensional vector space 0z ,. This space is equipped with
an action of G(O) and Aut% O and (241) is equivariant with respect to these

groups.

4.6.14. Let us define 0z .. Of course the action of G(O) on v, is defined
to be trivial (G(O) has no nontrivial characters). So we have to construct

for each y a functor
(242) Ztorsg(0) — {Auty O-mod}, L+ 0z,

where {Aut O-mod} denotes the category of Aut}, O-modules. First let us

define a functor

(243) w'2(0) — {Aut) O-mod}, L +— 0Ly

For £ € w'/?(0) set

(244) Oz = (Lo) PN

where Lg is the fiber of £ over the closed point 0 € Spec O and

(245) d(x) := (x,2p) = dim Orb,,
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Define the representation of Aut O in 9, as follows: Aut) O = Aut’(O, £)

acts in the obvious way and Z C Aut O acts via
(246) Xz :Z — Gy,

where x7 is the restriction of x € PT(F'G) to Z € LG (these two actions
are compatible because the composition of yz and the morphism (56) maps
—1 € pg to (—1)X:20)),

So we have constructed (243). w'/?(0) is a po-category in the sense of
3.4.4, {Aut) O-mod} is a Z-category, and (243) is a ug-functor (the po-
structure on {Aut% O} comes from the morphism (56) or, equivalently, from
the canonical embedding s — Auty0). So (243) induces a Z-functor
Ztorsg(0) = w'?(0) ®,, Z —{Aut} O-mod}. This is the definition of
(242).

4.6.15. Clearly Lie Aut%O = Der’ O acts on the one-dimensional space

0z, as follows:

1
(247) LOH(X,p):—§dimOrbX , Lp—0forn>0
As usual, L,, := —t"“% € Der? O.

4.6.16. Remark. The definition of 0., from 4.6.14 can be reformulated as
follows. Using the equivalence Z torss(O) —— Z tors,(0) from 3.4.5 we
interpret £ € Ztorsg(O) in terms of (59) as a lifting of the G,,-torsor
wo to a Z-torsor. We have the canonical morphism Z — “H from (62)
where “H is the Cartan torus of “G or, which is the same, “H is a Cartan
subgroup of “G with a fixed Borel subgroup containing it. Denote by Xz
the composition of Z — “H and y : “H — G,,,. The Z-torsor £ on Spec O
and the 1-dimensional representation x ; : Z — Gy, define a line bundle Dg,x
on Spec O. According to 4.6.6 Autz O = Aut(O, L), so the action of Aut O
on Spec O lifts to a canonical action of Autz O on ngx. Therefore Aut% O
acts on the fiber of D(E)yx at 0 € SpecO. The reader can easily identify this
fiber with the 9., from 4.6.14.
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4.6.17. Let us construct the isomorphism (241) for £ € w!'/?(0). We use
the Cliffordian description of Ag. Just as in 4.6.11 we set V = V, =
L@ @ K), L :=L®g CV, M = M := Cl(V)/C|(V)L. For
r € GR = G(K)/G(O) set L, := gLg~! where g is a preimage of z in
G(K). By (240) the fiber of Az at x equals

(248) MY .= {m € M¢|L, - m = 0}

Suppose that = € Orb,. Since Orb,, is the G(O)-orbit of  the tangent space
to Orby at z is (g ® 0)/((@®@ O)Ng(g® O)g~") = L7 ®o (L/(L N Lz))
where g € G(K) is a preimage of x. So the fiber of W(Srlbx at x equals
(L)%~ @ det(L/(L N L)) where d(x) = dim Orb,.. Taking (244) into
account we see that the fiber of the r.h.s. of (241) at x equals

(249) (det(L/(L N Ly))~"
So it remains to construct an isomorphism
(250) det(L/(L N L)) ® MY+ = C

4.6.18. Lemma. Consider a Tate space V equipped with a nondegenerate
symmetric bilinear form. Let L, A C V be Lagrangian c-lattices and M an
irreducible discrete module over the Clifford algebra Cl(V'). Consider the

operator
(251) NLoM— M

induced by the natural map A°L — A4V — CL(V). If d = dim L/(L N A)

then (251) induces an isomorphism
(252) ANYL/(LNA)) @ MM = pmF

The proof is reduced to the case where dimV < oo and V = L & A.
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4.6.19. We define (250) to be the isomorphism (252) for A = L, (in the
situation of 4.6.17 M* = C). So for £ € w!'/?(0) we have constructed
the isomorphism (241), which is equivariant with respect to G(O) and
Autd O = Aut®(0, L).

Denote by Cy the category of line bundles on Orb,. Both sides of (241)

are po-functors w!'/2(0) — O, extended to Z-functors
Z torsg(0) = w'/?(0) Qus 4 — Cy,

(the Z-structure on Cy, is defined by the character of Z inverse to (246));
for the L.h.s of (241) this follows from 4.6.8. Clearly (241) is an isomorphism
of functors w'/?(0) — C,. Therefore (241) is an isomorphism of functors
Z torsg(O) — Cy. The isomorphism (241) is Aut} O-equivariant because it

is Aut) O-equivariant and Z-equivariant.
2 q q

4.6.20. Recall that A depends on the choice of a nondegenerate invariant

bilinear form on g (see 4.6.3 and 4.4.7). As explained in the footnote to 4.4.7

there is a more canonical version of Az. In the c