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(ii) The composition zg(K) → Z → zg(O) is the morphism (97) for

A = zg(O).

(iii) The morphism (100) is AutK-equivariant.

We will not prove this theorem. In fact, the only nontrivial statement is

that (99) (or equivalently (34)) is a ring homomorphism; see ???for a proof.

The natural approach to the above theorem is based on the notion of

VOA (i.e., vertex operator algebra) or its geometric version introduced in

[BD] under the name of chiral algebra.21 In the next subsection (which can

be skipped by the reader) we outline the chiral algebra approach.

3.7.6. A chiral algebra on a smooth curve X is a (left) DX -module A
equipped with a morphism

j∗j
!(A � A) → ∆∗A(101)

where ∆ : X ↪→ X × X is the diagonal, j : (X × X) \ ∆(X) ↪→ X. The

morphism (101) should satisfy certain axioms, which will not be stated here.

A chiral algebra is said to be commutative if (101) maps A � A to 0. Then

(101) induces a morphism ∆∗(A ⊗ A) = j∗j!(A � A)/A � A → ∆∗A or,

which is the same, a morphism

A⊗A → A .(102)

In this case the chiral algebra axioms just mean that A equipped with

the operation (102) is a commutative associative unital algebra. So a

commutative chiral algebra is the same as a commutative associative unital

DX -algebra in the sense of 2.6. On the other hand, the DX -module Vac′X
corresponding to the AutO-module Vac′ by 2.6.5 has a natural structure of

chiral algebra (see the Remark below). The map zg(O)X → Vac′X induced

by the embedding zg(O) → Vac′ is a chiral algebra morphism. Given a point

x ∈ X one defines a functor A �→ A((x)) from chiral algebras to associative

topological algebras. If A = AX for some commutative Aut O-algebra A

21In 2.9.4 – 2.9.5 we used some ideas of VOA theory (or chiral algebra theory).
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then A((x)) is the algebra AKx from 3.7.3. If A = Vac′X then A((x)) is

the completed twisted universal enveloping algebra U
′ = U

′(g ⊗ K). So

by functoriality one gets a morphism zg(K) = zg(O)K → U
′. Its image is

contained in Z because zg(O)X is the center of the chiral algebra Vac′X .

Remark. Let us sketch a definition of the chiral algebra structure on Vac′X .

First of all, for every n one constructs a D-module Vac′SymnX on SymnX

(for n = 1 one obtains Vac′X). The fiber Vac′D of Vac′SymnX at D ∈ SymnX

can be described as follows. Consider D as a closed subscheme of X of order

n, denote by OD the ring of functions on the formal completion of X along

D, and define KD by SpecKD = (SpecOD) \ D. One defines the central

extension ˜g ⊗ KD of g ⊗ KD just as in the case n = 1. Vac′D is the twisted

vacuum module corresponding to the Harish-Chandra pair ( ˜g ⊗ KD, G(OD))

(see 1.2.5). Denote by Vac′X×X the pullback of Vac′
Sym2X

to X × X. Then

j!Vac′X×X = j!(Vac′X � Vac′X) ,(103)

∆†Vac′X×X = Vac′X(104)

where j and ∆ have the same meaning as in (101) and ∆† denotes the naive

pullback, i.e., ∆† = H1∆!. One defines (101) to be the composition

j∗j
!Vac′X � Vac′X = j∗j

!Vac′X×X → j∗j
!Vac′X×X/Vac′X×X = ∆∗Vac′X

where the last equality comes from (104).

3.7.7. Theorem. (i) The morphism (100) is a topological isomorphism.

(ii) The adjoint action of G(K) on Z is trivial.

The proof will be given in 3.7.10. It is based on the Feigin - Frenkel

theorem, so it is essential that g is semisimple and the central extension

of g ⊗ K corresponds to the “critical” scalar product (18). This was not

essential for Theorem 3.7.5.

We will also prove the following statements.
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3.7.8. Theorem. The map grZ → Zcl defined in 2.9.8 induces a topological

isomorphism griZ
∼−→ Zcl

(i) := {the space of homogeneous polynomials from

Zcl of degree i}.

3.7.9. Theorem. Denote by In the closed left ideal of U
′ topologically

generated by g⊗tnO, n ≥ 0. Then the ideal In := In∩Z ⊂ Z is topologically

generated by the spaces Zm
i , m < i(1−n), where Zm

i := {z ∈ Zi|L0z = mz},
Zi is the standard filtration of Z, and L0 := −t d

dt ∈ Der O.

3.7.10. Let us prove the above theorems. The elements of the image of

(100) are G(K)-invariant (see the Remark from 2.9.6). So 3.7.7(ii) follows

from 3.7.7(i). Let us prove 3.7.7(i), 3.7.8, and 3.7.9.

By 2.5.2 gr zg(O) = zcl
g (O). According to 2.4.1 zcl

g (O) can be identified

with the ring of G(O)-invariant polynomial functions on g∗ ⊗ ωO. Choose

homogeneous generators p1, . . . , pr of the algebra of G-invariant polynomials

on g∗ and set dj := deg pj . Define vjk ∈ zcl
g (O), 1 ≤ j ≤ r, 0 ≤ k < ∞, by

pj(η) =
∞∑

k=0

vjk(η)tk(dt)dj , η ∈ g∗ ⊗ ωO .(105)

According to 2.4.1 the algebra zcl
g (O) is freely generated by vjk. The action

of DerO on zcl
g (O) is easily described. In particular vjk = (L−1)kvj0/k!,

L0vj0 = djvj0. Lift vj0 ∈ zcl
g (O) = gr zg(O) to an element uj ∈ zg(O)

so that L0uj = djuj . Then the algebra zg(O) is freely generated by

ujk := (L−1)kuj/k!, 1 ≤ j ≤ r, 0 ≤ k < ∞. Just as in the example

at the end of 3.7.3 we see that zg(O)K = C[[. . . , ũj,−1, ũj0, ũj1, . . . ] and

L0ũjk = (dj + k)ũjk.

Denote by ujk the image of ũjk in Z. By 2.9.8 ujk ∈ Zdj
and the image

of ujk in Zcl
(dj)

is the function ṽjk : g∗ ⊗ ωK → C defined by

pj(η) =
∑

k

ṽjk(η)tk(dt)dj , η ∈ g∗ ⊗ ωK .(106)

We have an isomorphism of topological algebras

Zcl = C[[. . . ṽj,−1, ṽj0, ṽj1, . . . ](107)
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because

the algebra of G(O)-invariant polynomial functions

on g∗ ⊗ t−nωO is freely generated by the restrictions

of ṽjk for k ≥ −ndj while for k < −ndj the restriction

of ṽjk to g∗ ⊗ t−nωO equals 0.

(108)

(This statement is immediately reduced to the case n = 0 considered in

2.4.1). Theorem 3.7.8 follows from (107).

Now consider the morphism fn : zg(O)K → Z/In where In was defined in

3.7.9. We will show that

fn is surjective and its kernel is the ideal Jn topolog-

ically generated by ujk, k < dj(1 − n).
(109)

Theorems 3.7.7 and 3.7.9 follow from (109).

To prove (109) consider the composition fn : zg(O)K → Z/In ↪→
(U ′

/In)G(O). Equip U
′
/In with the filtration induced by the standard

one on U
′. The eigenvalues of L0 on the i-th term of this filtration

are ≥ i(1 − n). So Ker fn ⊃ Jn where Jn was defined in (109). Now

gr(U ′
/In)G(O) is contained in (grU

′
/In)G(O), i.e., the algebra of G(O)-

invariant polynomials on g∗ ⊗ t−nωO. Using (108) one easily shows that

the map zg(O)K/Jn → (U ′
/In)G(O) induced by fn is an isomorphism. This

implies (109). We have also shown that

the map Z → (U ′
/In)G(O) is surjective(110)

and therefore

Z = (U ′)G(O) .(111)

3.7.11. Remarks

(i) Here is another proof22 of (111). Let u ∈ (U ′)G(O). Take h ∈ H(K)

where H ⊂ G is a fixed Cartan subgroup. Then h−1uh is invariant with

respect to a certain Borel subgroup Bh ⊂ G. So h−1uh is G-invariant

22It is analogous to the proof of the fact that an integrable discrete representation of

g ⊗ K is trivial. We are not able to use the fact itself because U
′
is not discrete.
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(it is enough to prove this for the image of h−1uh in the discrete space

U
′
/In where In was defined in 3.7.9). Therefore u is invariant with

respect to hgh−1 ⊂ g ⊗ K for any h ∈ H(K). The Lie algebra g ⊗ K

is generated by g ⊗ O and hgh−1, h ∈ H(K). So u ∈ Z.

(ii) In fact

Z = (U ′)a for any open a ⊂ g ⊗ K .(112)

Indeed, one can modify the above proof as follows. First write u

as an (infinite) sum of uχ, χ ∈ h∗ := (LieH)∗, [a, uχ] = χ(a)uχ

for a ∈ h. Then take an h ∈ H(K) such that the image of h in

H(K)/H(O) = {the coweight lattice} is “very dominant” with respect

to a Borel subalgebra b ⊂ g containing h, so that h−1ah ⊃ [b, b].

We see that uχ = 0 unless χ is dominant, and h−1u0h is g-invariant.

Replacing h by h−1 we see that u = u0, etc.

(iii) Here is another proof of 3.7.7(ii). Consider the canonical filtration U
′
k

of U
′. It follows from (109) that the union of the spaces U

′
k ∩Z, k ∈ N,

is dense in Z. So it suffices to show that the action of G(K) on U
′
k ∩ Z

is trivial for every k. The action of G(K) on Zcl is trivial (see (107),

(106)). So the action of G(K) on grZ is trivial. The action of g ⊗ K

on g̃ ⊗ K corresponding to the action of G(K) defined by (19) is the

adjoint action, and the adjoint action of g ⊗ K on Z is trivial. So the

action of G(K) on Z factors through π0(G(K)). The group π0(G(K))

is finite (see 4.5.4), so we are done.

3.7.12. We are going to deduce Theorem 3.6.7 from [FF92]. Denote

by ALg(O) the coordinate ring of OpLg(O) (i.e., the scheme of Lg-opers

on SpecO). Let ϕO : ALg(O) ∼−→ zg(O) be an isomorphism satisfying

the conditions of 3.2.2. It induces an AutK-equivariant isomorphism

ϕK : ALg(K) ∼−→ zg(K) where ALg(K) is the algebra AK from 3.7.3

corresponding to A = ALg(O). Recall that AK is the coordinate ring

of the ind-scheme of horizontal sections of SpecAY ′ , Y ′ := SpecK. If
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A = ALg(O) then SpecAY ′ is the scheme of jets of Lg-opers on Y ′ and

its horizontal sections are Lg-opers on Y ′ (cf. 3.3.3). So ALg(K) is the

coordinate ring of OpLg(K) := the ind-scheme of Lg-opers on Spec K. It is

a Poisson algebra with respect to the Gelfand - Dikii bracket (we remind its

definition in 3.7.14). The Gelfand - Dikii bracket depends on the choice of a

non-degenerate invariant bilinear form on Lg. We define it to be dual to the

form (18) on g (i.e., its restriction to h∗ = Lh ⊂ Lg is dual to the restriction

of (18) to h).

By 3.7.5 and 3.7.7 we have a canonical isomorphism zg(K) ∼−→ Z, so ϕK

can be considered as an AutK-equivariant isomorphism

ALg(K) ∼−→ Z .(113)

Z is a Poisson algebra with respect to the Hayashi bracket (see 3.6.2).

3.7.13. Theorem. [FF92]

There is an isomorphism

ϕO : ALg(O) ∼−→ zg(O)(114)

satisfying the conditions of 3.2.2 and such that the corresponding isomor-

phism (113) is compatible with the Poisson structures.

We will show (see 3.7.16) that an isomorphism (114) with the properties

mentioned in the theorem satisfies the conditions of 3.6.7. So it is unique

(see the Remark from 3.6.7).

Remark. As explained in 3.6.12, one can associate a Poisson bracket on Z

to any invariant bilinear form B on g (the bracket from 3.6.2 corresponds to

the form (18)). If B is non-degenerate one can consider the dual form on Lg

and the corresponding Gelfand - Dikii bracket on ALg(K). The isomorphism

(113) corresponding to (114) is compatible with these Poisson brackets.

3.7.14. Let us recall the definition of the Gelfand - Dikii bracket from

[DS85]. This is a Poisson bracket on Opg(K) (i.e., a Poisson bracket on
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its coordinate ring Ag(K)). It depends on the choice of a non-degenerate

invariant bilinear form ( , ) on g.

Denote by g̃ ⊗ K the Kac–Moody central extension of g⊗K corresponding

to ( , ). As a vector space g̃ ⊗ K is (g ⊗ K) ⊕ C and the commutator in

g̃ ⊗ K is defined by the 2-cocycle Res(du, v), u, v ∈ g ⊗ K. The topological

dual space (g̃ ⊗ K)∗ is an ind-scheme. The algebra of regular functions on

(g̃ ⊗ K)∗ is a Poisson algebra with respect to the Kirillov bracket23 (i.e., the

unique continuous Poisson bracket such that the natural map from g̃ ⊗ K

to the algebra of regular functions on (g̃ ⊗ K)∗ is a Lie algebra morphism).

So (g̃ ⊗ K)∗ is a Poisson “manifold”. Denote by (g̃ ⊗ K)∗1 the space of

continuous linear functionals l : g̃ ⊗ K → C such that the restriction of l to

the center C ⊂ g̃ ⊗ K is the identity. (g̃ ⊗ K)∗1 is a Poisson submanifold of

(g̃ ⊗ K)∗.

We identify (g̃ ⊗ K)∗1 with Conn := the ind-scheme of connections on

the trivial G-bundle on SpecK: to a connection ∇ = d + η, η ∈ g ⊗ ωK ,

we associate l ∈ (g̃ ⊗ K)∗1 such that for any u ∈ g ⊗ K ⊂ g̃ ⊗ K one has

l(u) = Res(u, η). It is easy to check that the gauge action of g⊗K on Conn

corresponds to the coadjoint action of g⊗K on (g̃ ⊗ K)∗1, and one defines the

coadjoint action24 of G(K) on (g̃ ⊗ K)∗ so that its restriction to (g̃ ⊗ K)∗1
corresponds to the gauge action of G(K) on Conn. The action of G(K) on

the Poisson “manifold” (g̃ ⊗ K)∗1 is not Hamiltonian in the literal sense, i.e.,

one cannot define the moment map (g̃ ⊗ K)∗1 → (g⊗K)∗. However one can

define the moment map (g̃ ⊗ K)∗1 → (g̃ ⊗ K)∗: this is the identity map.

The point is that Opg(K) can be obtained from Conn = (g̃ ⊗ K)∗1 by

Hamiltonian reduction (such an interpretation of Opg(K) automatically

defines a Poisson bracket on Ag(K)). Fix a Borel subgroup B ⊂ Gad.

Let N be its unipotent radical, n := Lie N . Since the restriction of

23As explained in [We83] the “Kirillov bracket” was invented by Sophus Lie and then

rediscovered by several people including A.A. Kirillov.
24It is dual to the adjoint action of G(K) on g̃ ⊗ K defined by (19) (of course in (19)

c should be replaced by our bilinear form on g).
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the Kac-Moody cocycle to n ⊗ K is trivial we have the obvious splitting

n ⊗ K → g̃ ⊗ K. It is B(K)-equivariant and this property characterizes it

uniquely. The action of N(K) on Conn is Hamiltonian: the moment map

µ : Conn = (g̃ ⊗ K)∗1 → (n ⊗ K)∗ is induced by the above splitting. Let

Char� ⊂ (n ⊗ K)∗ be the set of non-degenerate characters, i.e., the set of

Lie algebra morphisms l : n ⊗ K → C such that for each simple root α the

restriction of l to gα⊗K is nonzero. For every l ∈ Char� the action of N(K)

on µ−1(l) is free and the quotient N(K)\µ−1(l) can be canonically identified

with Opg(K) (indeed, µ−1(l) is the space of connections ∇ = d + η ∈ Conn

such that η =
∑
α∈Γ

Jα + q where q ∈ b⊗ ωK , Γ is the set of simple roots, and

Jα = Jα(l) is a fixed nonzero element of g−α ⊗ ωK). So Opg(K) is obtained

from Conn by Hamiltonian reduction over l with respect to the action of

N(K), whence we get a Poisson bracket on Opg(K). It is called the Gelfand

- Dikii bracket. It does not depend on l. Indeed, for l, l′ ∈ Char� consider

the isomorphism

N(K) \ µ−1(l) ∼−→ N(K) \ µ−1(l′)(115)

that comes from the identification of both sides of (115) with Opg(K). The

(co) adjoint action of H(K) on Conn = (g̃ ⊗ K)∗1 preserves the relevant

structures (i.e., the Poisson bracket on Conn, the action of N(K) on Conn,

and the moment map µ : Conn → (n ⊗ K)∗). There is a unique h ∈ H(K)

that transforms l to l′ and (115) is induced by the action of this h. So (115)

is a Poisson map.

Remarks

(i) If the bilinear form ( , ) on g is multiplied by c ∈ C∗ then the Poisson

bracket on Opg(K) is multiplied by c−1.

(ii) The Gelfand - Dikii bracket defined above is the “second Gelfand -

Dikii bracket”. The definition of the first one and an explanation of

the relation with the original works by Gelfand - Dikii ([GD76], [GD78])
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can be found in [DS85] (see Sections 2.3, 3.6, 3.7, 6.5, and 8 from loc.

cit).

3.7.15. Let F ∈ Opg(K), i.e., F = (FB,∇) where FB is a B-bundle on

Spec K and ∇ is a connection on the corresponding G-bundle satisfying

the conditions of 3.1.3 (here G is the adjoint group corresponding to g

and B ⊂ G is the Borel subgroup). We are going to describe the tangent

space TFOpg(K) and the cotangent space T ∗
F
Opg(K). Then we will write

an explicit formula for {ϕ, ψ}(F), ϕ, ψ ∈ Ag(K).

Remark. Of course FB is always trivial, so we could consider F as a

connection ∇ in the trivial G-bundle (i.e., ∇ = d + q, q ∈ g ⊗ ωK) modulo

gauge transformations with respect to B.

To describe TFOpg(K) we must study infinitesimal deformations of

F = (FB,∇). Since FB cannot be deformed all of them come from

infinitesimal deformations of ∇, which have the form ∇(ε) = ∇ + εq,

q ∈ H0(Spec K, g−1
F

⊗ ωK) (see 3.1.1 for the definition of g−1; g
−1
F

:= g
−1
FB

is

the FB-twist of g−1). Taking in account the infinitesimal automorphisms of

FB we get:

TFOpg(K) = H0(Spec K, Coker(∇ : bF → g
−1
F

⊗ ωK)) .(116)

Here is a more convenient description of the tangent space:

TFOpg(K) = Coker(∇ : nK
F → bK

F ⊗ ωK)(117)

where nK
F

:= H0(Spec K, nF), bK
F

:= H0(Spec K, bF) (the natural map from

the r.h.s. of (117) to the r.h.s. of (116) is an isomorphism). Using the

invariant scalar product ( , ) on g we identify b∗, n∗ with g/n, g/b and get

the following description of the cotangent space:

T ∗
FOpg(K) = {u ∈ gK

F |∇(u) ∈ bK
F ⊗ ωK}/nK

F .(118)

Here is an explicit formula for the Gelfand - Dikii bracket:

{ϕ, ψ}(F) = Res(∇(dFϕ), dFψ), ϕ, ψ ∈ Ag(K) .(119)
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In this formula the differentials dFϕ and dFψ are considered as elements of

the r.h.s. of (118).

3.7.16. Theorem. 25

(i) Set I := Ker(Ag(K) → Ag(O)). Then {I, I} ⊂ I and therefore I/I2 is

a Lie algebroid over Ag(O).

(ii) There is an AutO-equivariant topological isomorphism of Lie alge-

broids

I/I2 ∼−→ ag(120)

(see 3.5.11, 3.5.15 for the definition of ag).

(In this theorem I2 denotes the closure of the subspace generated by ab,

a ∈ I, b ∈ I).

Theorem 3.6.7 follows from 3.7.13 and 3.7.16.

Remark. The isomorphism (120) is unique (see 3.5.13 or 3.5.14).

3.7.17. Let us prove Theorem 3.7.16. We keep the notation of 3.7.15. Take

F ∈ Opg(O). Here is a description of TFOpg(O) similar to (117):

TFOpg(O) = Coker(∇ : nO
F → bO

F ⊗ ωO)(121)

where nO
F

:= H0(Spec O, nF). The fiber of I/I2 over F is the conormal space

T⊥
F
Opg(O) ⊂ T ∗

F
Opg(K). According to (121) it has the following description

in terms of (118):

T⊥
F Opg(O) = {u ∈ gO

F |∇(u) ∈ bO
F ⊗ ωO}/nO

F .(122)

Now it is clear that {I, I} ⊂ I: if ϕ, ψ ∈ I, F ∈ Opg(O) then dFϕ and

dFψ belong to the r.h.s. of (122) and therefore the r.h.s. of (119) equals 0.

The map

I/I2 → Der Ag(O) ,(123)

25Inspired by [Phys]
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which is a part of the algebroid structure on I/I2, is defined by ϕ �→ ∂ϕ,

∂ϕ(ψ) := {ϕ, ψ}, ϕ ∈ I, ψ ∈ Ag(K)/I = Ag(O). So according to (119) the

map

T⊥
F Opg(O) → TFOpg(O)(124)

induced by (123) is the operator

∇ : {u ∈ gO
F | ∇(u) ∈ bO

F ⊗ ωO}/nO
F → (bO

F ⊗ ωO)/∇(nO
F ) .(125)

The algebroid structure on I/I2 induces a Lie algebra structure on the

kernel aF of the map (124). On the other hand, aF is the kernel of

(125), i.e., aF = {u ∈ gO
F
| ∇(u) = 0}/{u ∈ nO

F
| ∇(u) = 0}. Since

{u ∈ nO
F
|∇(u) = 0} = 0 we have

aF = {u ∈ gO
F |∇(u) = 0} .(126)

The r.h.s. of (126) is a Lie subalgebra of gO
F
.

Lemma. The Lie algebra structure on aF that comes from the algebroid

structure on I/I2 coincides with the one induced by (126).

Proof. It suffices to show that if ϕ1, ϕ2 ∈ Ag(K) and dFϕi ∈ aF then

dF{ϕ1, ϕ2} = [dFϕ1, dFϕ2](127)

(in the r.h.s. of (127) dFϕi are considered as elements of gO
F

via (126)).

Consider a deformation F(ε) of F, ε2 = 0. Write F as (FB,∇). Without loss

of generality we can assume that F(ε) = (FB,∇ + εq), q ∈ bK
F
⊗ ωK . Write

dF(ε)ϕi as dFϕi + εµi. Then

{ϕ1, ϕ2}(F(ε)) = Res((∇ + ε ad q)(dFϕ1 + εµ1), dFϕ2 + εµ2) =

ε Res([q, dFϕ1], dFϕ2) = ε Res(q, [dFϕ1, dFϕ2])

(we have used that ∇(dFϕi) = 0). The equality (127) follows.
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According to the lemma the kernel aF of the map (124) coincides as a Lie

algebra with (guniv)F, i.e., the fiber at F of the Lie algebra guniv from 3.5.11.

The map (124)=(125) is surjective because ∇ : gO
F
→ gO

F
⊗ωO is surjective.

It is easy to show that (121) and (122) are homeomorphisms and that the

map (124) is open.

In a similar way one shows that the morphism (123) is surjective and

open, and its kernel can be canonically identified with guniv equipped with

the discrete topology (the identification induces the above isomorphism

aF
∼−→ (guniv)F for every F ∈ Opg(O)). Lemma 3.5.12 yields a continuous

Lie algebroid morphism f : I/I2 → ag such that the diagram

0 −→ guniv −→ I/I2 −→ Der Ag(O) −→ 0

id
� f

� � id

0 −→ guniv −→ ag −→ Der Ag(O) −→ 0

is commutative. Since the rows of the diagram are exact in the topological

sense, f is a topological isomorphism. Clearly f is AutO-equivariant.

3.8. Singularities of opers.

3.8.1. Let U be an open dense subset of our curve X. We are going to

represent the ind-scheme Opg(U) as a union of certain closed subschemes

Opg,D(X) where D runs through the set of finite subschemes of X such that

D ∩ U = ∅.
According to 3.1.9 we have a canonical isomorphism Op

g
(U) ∼−→ Opg(U)

where Op
g
(U) is the Γ(U, VωX )-torsor induced from the Γ(U, ω⊗2

X )-torsor

Opsl2(U) by a certain embedding Γ(U, ω⊗2
X ) ⊂ Γ(U, VωX ). The definition of

this embedding and of V = Vg can be found in 3.1.9. Let us remind that V is

a vector space equipped with a Gm-action (i.e., a grading) and VωX denotes

the twist of V by the Gm-torsor ωX . We have dimV = r := rank g and the

degrees of the graded components of V are equal to the degrees d1, . . . , dr

of “basic” invariant polynomials on g.
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If D is a finite subscheme of X one has a canonical embedding VωX ↪→
VωX(D). Denote by Op

g,D
(X) the Γ(X, VωX(D))-torsor induced by the

Γ(X, VωX )-torsor Op
g
(X). Clearly Op

g,D
(X) is a closed subscheme of

Op
g
(X \ D). Denote by Opg,D(X) the image of Op

g,D
(X) in Opg(X \ D).

If D ⊂ D′ then Opg,D(X) ⊂ Opg,D′(X) . For any open dense U ⊂ X we

have Opg(U) =
⋃

D∩U=∅
Opg,D(X).

In 3.8.23 we will give an “intrinsic” description of Opg,D(X), which does

not use the isomorphism Op
g

∼−→ Opg. The local version of this description

is given in 3.8.7 – 3.8.10.

3.8.2. Now we can formulate the answer to the problem from 2.8.6:

N∆(G) = OpLg,∆(X) .(128)

N∆(G) is defined as a subscheme of an ind-scheme N ′
∆(G), which is

canonically identified with OpLg(X\∆) via the Feigin - Frenkel isomorphism.

(128) is an equality of subschemes of OpLg(X \ ∆).

We will not prove (128). A hint will be given in 3.8.6.

3.8.3. The definition of Opg,D(X) from 3.8.1 makes sense in the following

local situation: X = SpecO, O := C[[t]], D = SpecO/tnO. In this case

we write Opg,n(O) instead of Opg,D(X). Opg,n(O) is a closed subscheme

of the ind-scheme Opg(K). Of course Opg,0(O) = Opg(O), Opg,n(O) ⊂
Opg,n+1(O), and Opg(K) is the inductive limit of Opg,n(O).

According to 3.7.12 Ag(K) is the algebra of regular functions on Opg(K).

Denote by In the ideal of Ag(K) corresponding to Opg,n(O) ⊂ Opg(K).

Clearly In ⊃ In+1 and I0 is the ideal I from 3.7.16 (i). The ideals In form

a base of neighbourhoods of 0 in Ag(K).

3.8.4. Here is an explicit description of Ag(K) and In. We use the

notation of 3.5.6, so g-opers on Spec K are in one-to-one correspondence

with operators (64) such that uj(t) ∈ C((t)). Write uj(t) as
∑
k

ũjkt
k. Then

Ag(K) = C[[. . . ũj,−1, ũj0, ũj1, . . . ] (we use notation (98)). The ideal In is
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topologically generated by ũjk, k < −djn. The ujk from 3.5.6 are the images

of ũjk in Ag(O) = Ag(K)/I.

It is easy to describe the action of Der K on Ag(K). In particular

L0ũjk = (dj + k)ũjk .(129)

Just as in the global situation (see 3.1.12 – 3.1.14) the coordinate ring

Ag(K) of Opg(K) carries a canonical filtration. Its i-th term consists of those

“polynomials” in ũjk whose weighted degree is ≤ i, it being understood that

the weight of ũjk is dj .

3.8.5. Proposition. The ideal In ⊂ Ag(K) is topologically generated by the

spaces Am
i , m < i(1 − n), where Am

i is the set of elements a from the i-th

term of the filtration of the Ag(K) such that L0a = ma.

The isomorphism ALg(K) ∼−→ Z (see (113)) preserves the filtrations and

is AutK-equivariant. So Proposition 3.8.5 implies the following statement.

3.8.6. Proposition. The Feigin - Frenkel isomorphism ALg(K) ∼−→ Z maps

In ⊂ ALg(K) onto the ideal In from 3.7.9.

This is one of the ingredients of the proof of (128).

3.8.7. We are going to describe Opg,n(O) in “natural” terms (without using

the isomorphism (43)). Denote by g+ the locally closed reduced subscheme

of g consisting of all a ∈ g such that for positive roots α one has a−α = 0

if α is non-simple, a−α �= 0 if α is simple (a−α is the component of a from

the root subspace g−α). Then for any C-algebra R the set g+(R) consists of

a ∈ g ⊗ R such that a−α = 0 for each non-simple α > 0 and a−α generates

the R-module g−α ⊗ R for each simple α.

Recall that a g-oper over Spec K is a B(K)-conjugacy class of operators
d
dt + q(t), q ∈ g+(K). Here B is the Borel subgroup of the adjoint group G

corresponding to g.
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3.8.8. Definition. A (≤ n)-singular g-oper on SpecO is a B(O)-conjugacy

class of operators d
dt + t−nq(t), q ∈ g+(O).

Remarks

(i) The action of B(O) on the set of operators d
dt + t−nq(t), q ∈ g+(O), is

free. Indeed, the action of B(K) on { d
dt + q(t)|q ∈ g+(K)} is free (see

3.1.4).

(ii) For n = 0 one obtains the usual notion of g-oper on SpecO.

3.8.9. Proposition. The map {(≤ n)-singular g-opers on Spec O} → Opg(K)

is injective. Its image equals Opg,n(O).

Proof. We use the notation of 3.5.6. For every v1, . . . , vr ∈ C[[t]] the

operator

d

dt
+ t−n(i(f) + v1(t)e1 + . . . + vr(t)er)(130)

defines a (≤ n)-singular g-oper on SpecO. It is easy to show that this

is a bijection between operators (130) and (≤ n)-singular g-opers on

Spec O. Now let us transform (130) to the “canonical form” (64) by B(K)-

conjugation. Conjugating (130) by t−nρ̌ we obtain

d

dt
+ i(f) + nρ̌t−1 + t−nd1v1(t)e1 + . . . + t−ndrvr(t)er .(131)

To get rid of nρ̌t−1 we conjugate (131) by exp(−ne1/2t) and obtain the

operator (64) with

uj(t) = t−ndjvj(t) for j > 1 ,

u1(t) = t−nd1v1(t) + n(n − 2)/4t2 , d1 = 2 .

Clearly vj ∈ C[[t]] if and only if uj ∈ t−ndj C[[t]].

3.8.10. If points of Opg,n(O) are considered as (≤ n)-singular g-opers on

Spec O then the canonical embedding Opg,n(O) ↪→ Opg,n+1(O) maps the

B(O)-conjugacy class of d
dt + t−nq(t), q ∈ g+(O), to the B(O)-conjugacy

class of tρ̌( d
dt + t−nq(t))t−ρ̌ (it is well-defined because tρ̌B(O)t−ρ̌ ⊂ B(O)).
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3.8.11. Denote by Inv(g) the algebra of G-invariant polynomials on g.

There is a canonical morphism g → Spec Inv(g) = W \ h where W is the

Weyl group.

Suppose one has a (≤ 1)-singular g-oper on SpecO, i.e., a B(O)-conjugacy

class of d
dt + t−1q(t), q ∈ g+(O). The image of q(0) ∈ g in Spec Inv(g) is

called the residue of the oper. So we have defined the residue map

Res : Opg,1(O) → Spec Inv(g) = W \ h .(132)

It is surjective. Therefore it induces an embedding

Inv(g) ↪→ Ag(K)/I1(133)

(recall that Ag(K)/I1 is the coordinate ring of Opg,1(O); see 3.8.3).

3.8.12. Proposition. Res(Opg(O)) ⊂ W \ h consists of a single point, which

is the image of −ρ̌ ∈ h.

Remark. We prefer to forget that −ρ̌ and ρ̌ have the same image in W \ h.

Proof. We must compute the composition of the map Opg(O) → Opg,1(O)

described in 3.8.10 and the map (132). If q(t) ∈ g+(O) then tρ̌( d
dt+q(t))t−ρ̌ =

d
dt +

a−ρ̌
t +{something regular} where a belongs to the sum of the root spaces

corresponding to simple negative roots. Now a − ρ̌ and −ρ̌ have the same

image in W \ h.

3.8.13. Proposition. Let f ∈ Ag(K)/I1, i.e., f is a regular function on

Opg,1(O). Then the following conditions are equivalent:

(i) f ∈ Inv(g), where Inv(g) is identified with its image by (133);

(ii) f is Aut0 O-invariant;

(iii) L0f = 0.

Proof. Clearly (i)⇒(ii)⇒(iii). Let us deduce (i) from (iii). Consider a

(≤ 1)-singular g-oper on SpecO. This is the B(O)-conjugacy class of a

connection d
dt + t−1q(t), q ∈ g+(O). If t is replaced by λt this connection is

replaced by d
dt + t−1q(λt). Since L0f = 0 the value of f on the connection
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d
dt +t−1q(λt) does not depend on λ, so it depends only on q(0) ∈ g+ (because

lim
λ→0

q(λt) = q(0)). It remains to use the fact that a B-invariant regular

function on g+ extends to a G-invariant polynomial on g (see Theorem 0.10

from [Ko63]).

3.8.14. Remark. According to 3.8.4 the algebra Ag(K)/I1 is freely generated

by ujk, k ≥ −dj , where ujk ∈ Ag(K)/I1 is the image of ũjk ∈ Ag(K).

By 3.8.13 and (129) Inv(g) ⊂ Ag(K)/I1 is generated by vj := uj,−dj
.

The isomorphism Spec C[v1, . . . , vr]
∼−→ Spec Inv(g) is the composition

Spec C[v1, . . . , vr] → g → Spec Inv(g) where the first map equals i(f) −
ρ̌ + v1e1 + . . . + vrer (we use the notation of 3.5.6).

3.8.15. We are going to prove Theorem 3.6.11. In 3.8.16 – 3.8.17 we

will formulate a property of the Feigin - Frenkel isomorphism (113). This

property reduces Theorem 3.6.11 to a certain statement (see 3.8.19), which

involves only opers and the Gelfand - Dikii bracket. This statement will be

proved in 3.8.20 – 3.8.22.

3.8.16. We will use the notation of 3.5.17. Besides, if DerO acts on a vector

space V we set V 0 := {v ∈ V |L0v = 0}.
As explained in 3.6.9, the map π from 3.6.8 induces a morphism

(Z/Z · Z<0)0 = (Z/Z · Z<0)≤0 = Z≤0/(Z · Z<0 ∩ Z≤0) → C(134)

where C is the center of Ug. Now (113) induces an isomorphism

(Z/Z · Z<0)0 ∼−→ (ALg(K)/I1)0(135)

because by 3.8.5 I1 = ALg(K) · ALg(K)<0. By 3.8.13 the r.h.s. of (135)

equals Inv(Lg). So (134) and (135) yield a morphism

Inv(Lg) → C .(136)

Denote by Inv(h∗) the algebra of W -invariant polynomials on h∗. Since
Lh = h∗ there is a canonical isomorphism Inv(Lg) ∼−→ Inv(h∗). We also have
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the Harish-Chandra isomorphism C
∼−→ Inv(h∗). So (136) can be considered

as a map

Inv(h∗) → Inv(h∗) .(137)

3.8.17. Theorem. (E. Frenkel, private communication)

The morphism (137) maps f ∈ Inv(h∗) to f− where f−(λ) := f(−λ),

λ ∈ h∗.

3.8.18. Using 3.8.17 we can replace the mysterious lower left corner of

diagram (84) by its oper analog. Diagram (143) below is obtained essentially

this way. Let us define the lower arrow of (143), which is the oper analog of

the map (83) constructed in 3.6.9 – 3.6.10.

According to 3.8.5

I1 = Ag(K) · Ag(K)<0 .(138)

By 3.8.13 we have a canonical isomorphism

(Ag(K)/I1)0
∼−→ Inv(g) .(139)

For h ∈ h denote by mh the maximal ideal of Inv(g) consisting of polynomials

vanishing at h. Set m := m−ρ̌. By 3.8.12 the isomorphism (139) induces

(I/I1)0
∼−→ m .(140)

Now we obtain

(I/(I2 + I1))0
∼−→ m/m2(141)

(to get (141) from (140) we use that

(I2)0 ⊂ (I0)2 + I · I<0 ⊂ (I0)2 + Ag(K) · Ag(K)<0 = (I0)2 + I1 ;

see (138)).

For a regular h ∈ h we identify mh/m2
h with h∗ by assigning to a W -

invariant polynomial on h its differential at h. In particular for m = m−ρ̌

we have m/m2 ∼−→ h∗ (by the way, if we wrote m as mρ̌ we would obtain a

different isomorphism m/m2 ∼−→ h∗).
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Finally, using (138) we rewrite the l.h.s. of (141) in terms of I/I2 and get

an isomorphism

(I/I2)≤0/(Ag(O) · (I/I2)<0 ∩ (I/I2)≤0) ∼−→ h∗ .(142)

3.8.19. Proposition. The diagram

(ag)≤0/(Ag(O) · a<0
g ∩ (ag)≤0) ∼−→ h� �

� �

(I/I2)≤0/(Ag(O) · (I/I2)<0 ∩ (I/I2)≤0) ∼−→ h∗

(143)

commutes. Here the lower arrow is the isomorphism (142), the upper one

is the isomorphism (78), the left one is induced by the isomorphism (120)

(which comes from the Gelfand - Dikii bracket on Ag(K)), and the right one

is induced by the invariant scalar product on g used in the definition of the

Gelfand - Dikii bracket.

The proposition will be proved in 3.8.20 – 3.8.22.

Theorem 3.6.11 follows from 3.8.17 and 3.8.19. The commutativity of

(143) implies the anticommutativity of (84) because the following diagram

is anticommutative:

mρ̌/(mρ̌)2
∼−→ m−ρ̌/(m−ρ̌)2∼−→ ∼−→

h∗

Here the upper arrow is induced by the map f �→ f− from 3.8.17.

3.8.20. We are going to formulate a lemma used in the proof of Proposi-

tion 3.8.19. Consider the composition

I/I2 → I/(I2 + I1)
∼−→ ag/Ag(O) · a<0

g = ag/an = guniv/nuniv .(144)

Here the second arrow comes from (120) and (138); an and nuniv were

defined in 3.5.16, ag was defined in 3.5.11; the equality an = Ag(O) · a<0
g

was proved in 3.5.18. The fiber of I/I2 over F = (FB,∇) ∈ Opg(O) equals

{u ∈ gO
F
|∇(u) ∈ bO

F
⊗ωO}/nO

F
(see (122)) and the fiber of guniv/nuniv over F
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equals (gF/nF)0 :=the fiber of gF/nF at the origin 0 ∈ Spec O. Consider the

maps

ϕ, ψ : {u ∈ gO
F |∇(u) ∈ bO

F ⊗ ωO}/nO
F → (gF/nF)0

where ϕ is induced by (144) and ψ is evaluation at 0.

3.8.21. Lemma. ϕ = ψ.

Proof. It follows from 3.7.17 that the restrictions of ϕ and ψ to aF := {u ∈
gO

F
|∇(u) = 0} are equal. So it suffices to show that Kerϕ ⊂ Kerψ. Clearly

Kerϕ = T⊥
F
Opg,1(O) := the conormal space to Opg,1(O) at F. For any

q ∈ bO
F

the oper Fq := (FB,∇ + q · dt
t ) is (≤ 1)-singular. So the image

of bO
F
⊗ t−1ωO in the r.h.s. of (117) is contained in the tangent space

TFOpg,1(O). Therefore T⊥
F
Opg,1(O) ⊂ Ker ψ.

3.8.22. Now let us prove 3.8.19. Since the l.h.s. of (142) equals the l.h.s.

of (141) we can reformulate 3.8.19 as follows.

Let f ∈ Inv(g), f(−ρ̌) = 0. Consider f as an element of Ag(K)/I1 (see

(133)). By 3.8.12 f ∈ I/I1. The image of f in I/(I2 + I1) can be considered

as an element ν ∈ guniv/nuniv (see (144)). On the other hand, let λ ∈ h∗ be

the differential at −ρ̌ of the restriction of f ∈ Inv(g) to h. To prove 3.8.19

we must show that ν equals the image of λ under the composition

h∗
∼−→ h ⊂ h ⊗ Ag(O) = buniv/nuniv ⊂ guniv/nuniv .

By 3.8.21 this is equivalent to the following statement: let F = (FB,∇) ∈
Opg(O), q ∈ bO

F
, Fεq := (FB,∇ + εq dt

t ), then

d

dε
f(Res(Fεq))|ε=0 = λ(qh(0))(145)

where qh(t) ∈ h[[t]] is the image of q in bO
F
/nO

F
= h⊗O. Just as in the proof

of 3.8.12 one shows that Res(Fεq) equals the image of −ρ̌ + εqh(0) in W \ h.

So (145) is clear.
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3.8.23. In this subsection (which can certainly be skipped by the reader)

we give an “intrinsic” description of the scheme Opg,D(X) from 3.8.1. It is

obtained by a straightforward “globalization” of 3.8.7 – 3.8.10.

Denote by G the adjoint group corresponding to g. Suppose we are in

the situation of 3.1.2. So we have a B-bundle FB on X, the induced G-

bundle FG, and the gF ⊗ ωX -torsor Conn(FG). Let D be a finite subscheme

of X. Denote by ConnD(FG) the gF ⊗ ωX(D)-torsor induced by Conn(FG);

so sections of ConnD(FG) are connections with (≤ D)-singularities. Just

as in 3.1.2 one defines c : ConnD(FG) → (g/b)F ⊗ ωX(D). The notion of

(≤ D)-singular g-oper on X is defined as follows: in Definition 3.1.3 replace

Conn by ConnD and ωX by ωX(D).

If X is complete then (≤ D)-singular g-opers on X form a scheme. Just as

in 3.8.9 one shows that the natural morphism from this scheme to Opg(X\D)

is a closed embedding and its image equals Opg,D(X). So one can consider

Opg,D(X) as the moduli scheme of (≤ D)-singular g-opers on X.

If D ⊂ D′ then Opg,D(X) ⊂ Opg,D′(X), so we should have a natural

way to construct a (≤ D′)-singular g-oper (F′
B,∇′) from a (≤ D)-singular g-

oper (FB,∇). Of course (F′
B,∇′) should be equipped with an isomorphism

α : (F′
B,∇′)|X\∆

∼−→ (FB,∇)|X\∆ where ∆ ⊂ X is the finite subscheme

such that D′ = D + ∆ if D, D′, ∆ are considered as effective divisors. The

connection ∇′ is reconstructed from ∇ and α, while (F′
B, α) is defined by

the following property (cf. 3.8.10): if x ∈ ∆, f is a local equation of ∆ at x

and s is a local section of FB at x then there is a local section s′ of F′
B at x

such that α(s′) = λ(f)s where λ : Gm → H is the morphism corresponding

to ρ̌.
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4. Pfaffians and all that

4.0. Introduction.

4.0.1. Consider the “normalized” canonical bundle

ω	
BunG

:= ωBunG
⊗ ω⊗−1

0(146)

where ω0 is the fiber of ωBunG
over the point of BunG corresponding to the

trivial G-bundle on X. In this section we will associate to an LG-oper F the

invertible sheaf λF on BunG mentioned in 0.2(d). λF will be equipped with

an isomorphism λ⊗2n
F

∼−→ (ω	
BunG

)⊗n for some n �= 0. This isomorphism

induces the twisted D-module structure on λF required in 0.2(d).

According to formula (57) from 3.4.3 OpLG(X) = OpLg(X)×Z torsθ(X)

where Z is the center of LG. Actually λF depends only on the image of F

in Z torsθ(X). So our goal is to construct a canonical functor

λ : Z torsθ(X) → µ∞ torsθ(BunG)(147)

where µ∞ torsθ(BunG) is the groupoid of line bundles A on BunG equipped

with an isomorphism A⊗2n ∼−→ (ω	
BunG

)⊗n for some n �= 0.

4.0.2. The construction of (147) is quite simple if G is simply connected.

In this case Z is trivial, so one just has to construct an object of

µ∞ torsθ(BunG). Since G is simply connected BunG is connected and simply

connected (interpret a G-bundle on X as a G-bundle on the C∞ manifold

corresponding to X equipped with a ∂̄-connection). So the problem is to

show the existence of a square root of ω	
BunG

(then µ∞ torsθ(BunG) has a

unique object whose fiber over the point of BunG corresponding to the trivial

G-bundle is trivialized). To solve this problem we use the notion of Pfaffian.

To any vector bundle Q equipped with a non-degenerate symmetric form

Q⊗Q → ωX Laszlo and Sorger associate in [La-So] its Pfaffian Pf(Q), which

is a canonical square root of detRΓ(X,Q). In 4.2 we give another definition

of Pfaffian presumably equivalent to the one from [La-So].
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Fix L ∈ ω1/2(X) (i.e., L is a square root of ωX). Then the line bundle on

BunG whose fiber at F ∈ BunG equals

Pf(gF ⊗ L) ⊗ Pf(g ⊗ L)⊗−1(148)

is a square root of ω	
BunG

(see 4.3.1 for details).

So to understand the case where G is simply connected it is enough to

look through 4.2 and 4.3.1. In the general case the construction of (147) is

more complicated. The main point is that the square root of ω	
BunG

defined

by (148) depends on L ∈ ω1/2(X).

4.0.3. Here is an outline of the construction of (148) for any semisimple G.

As explained in 3.4.6 Z torsθ(X) is a Torsor over the Picard category

Z tors(X) and µ∞ torsθ(BunG) is a Torsor over the Picard category

µ∞ tors(BunG) := lim
−→
n

µn tors(BunG)(149)

The functor (147) we are going to construct is �-affine in the sense of 3.4.6

for a certain Picard functor � : Z tors(X) → µ∞ tors(BunG). We define �

in 4.1. The Torsor Z torsθ(X) is induced from ω1/2(X) via a certain Picard

functor µ2 tors(X) → Z tors(X) (see 3.4.6). So to construct λ it is enough

to construct an �′-affine functor λ′ : ω1/2(X) → µ∞ torsθ(X) where �′ is the

composition µ2 tors(X) → Z tors(X) �−→µ∞ tors(BunG). We define λ′ by

L �→ λ′
L where λ′

L is the line bundle on BunG whose fiber at F ∈ BunG

equals (148). The fact that λ′ is �′-affine is deduced in 4.4 from 4.3.10,

which is a general statement on SOn-bundles26. Actually in subsections 4.2

and 4.3 devoted to Pfaffians the group G does not appear at all.

4.0.4. Each line bundle on BunG constructed in this section is equipped

with the following extra structure: for every x ∈ X a central extension of

G(Kx) acts on its pullback to the scheme BunG,x from 2.3.1. This structure

is used in 4.3. We will also need it in Chapter 5.

26In fact 4.3.10 is a refinement of Proposition 5.2 from [BLaSo].
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4.1. µ∞-torsors on BunG.

4.1.1. Let G be a connected affine algebraic group, Π a finite abelian

group, 0 → Π(1) → G̃ → G → 0 an extension of G. Our goal is to

construct a canonical Picard functor � : Π∨ tors(X) → µ∞ tors(BunG) where

Π∨ := Hom(Π, µ∞).

Remark. If G is semisimple and G̃ is the universal covering of G then

Π = π1(G) and Π∨ is canonically isomorphic to the center Z of LG (the

isomorphism is induced by the duality between the Cartan tori of G and
LG). So in this case � is a Picard functor Z tors(X) → µ∞ tors(BunG), as

promised in 4.0.3.

We construct � in 4.1.2–4.1.4. We “explain” the construction in 4.1.5

and slightly reformulate it in 4.1.6. In 4.1.7–4.1.9 the action of a central

extension of G(Kx) is considered. In 4.1.10–4.1.11 we give a description

of the fundamental groupoid of BunG, which clarifies the construction of

torsors on BunG. The reader can skip 4.1.5 and 4.1.10–4.1.11.

4.1.2. For F ∈ BunG denote by F̃ the Π(1)-gerbe on X of G̃-liftings of

F . Its class c(F) is the image of cl(F) by the boundary map H1(X, G) →
H2

(
X, Π(1)

)
= Π. For a finite non-empty S ⊂ X the gerbe F̃X\S is neutral.

Therefore |F̃(X\S)| (:= the set of isomorphism classes of objects of F̃(X\S))

is a non-empty H1
(
X \ S,Π(1)

)
-torsor. Denote it by φS,F . When F varies

φS,F become fibers of an H1
(
X \ S, Π(1)

)
-torsor φS over BunG.

4.1.3. For any x ∈ X the set |F̃(Spec Ox)| has a single element. We use it

to trivialize the Π-torsor |F̃(Spec Kx)| (note that Π = H1
(
Spec Kx,Π(1)

)
).

Thus the restriction to SpecKs, s ∈ S, defines a Ress-affine map Ress,F :

φS,F → Π where Ress : H1
(
X \ S, Π(1)

)
→ Π is the residue at s. For c ∈ Π

set ΠS
c := {πS = (πs) :

∑
πs = c} ⊂ ΠS . The map ResS,F := (Ress,F ) :

φS,F → ΠS has image ΠS
c(F).
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4.1.4. Recall that Π∨ is the group dual to Π, so we have a non-degenerate

pairing ( ) : Π × Π∨ → µ∞ .

Let E be a Π∨-torsor on X. Set ES :=
∏

s∈S Es = the set of trivializations

of E at S; this is a (Π∨)S-torsor. For any e ∈ ES we have the class

cl(E , e) ∈ H1
c (X \ S, Π∨). Denote by �S,E,F a µ∞-torsor equipped with a

map

( , )� : φS,F × ES → �S,E,F(150)

such that for ϕ ∈ φS,F , e = (es) ∈ ES , h ∈ H1
(
X \ S, Π(1)

)
, χ = (χs) ∈

(Π∨)S one has

(ϕ + h, e)� = (h, cl(E , e))P(ϕ, e)�

(ϕ, χe)� = (ResS ϕ, χ)(ϕ, e)�.
(151)

Here ( , )P : H1
(
X \ S, Π(1)

)
× H1

c

(
X \ S, Π∨)

→ µ∞ is the Poincaré

pairing and (ResS ϕ, χ) :=
∏

s∈S(Ress ϕ, χs) ∈ µ∞. Such (�S,E,F , ( )�)) exists

and is unique. If S′ ⊃ S then we have obvious maps φS,F ↪→ φS′,F , ES′ � ES ,

and there is a unique identification of µ∞-torsors �S,E,F = �S′,E,F that makes

these maps mutually adjoint for ( , )�. Thus our µ∞-torsor is independent

of S and we denote it simply �E,F .

When F varies �E,F become fibers of a µ∞-torsor �E over BunG. The

functor

� = �G̃ : Π∨ tors(X) → µ∞ tors(BunG),(152)

E �→ �E , has an obvious structure of Picard functor. The corresponding

homomorphism of the automorphism groups Π∨ → Γ(BunG, µ∞) is χ �→
(c, χ).

Remark. In fact � is a functor Π∨ tors(X) → µm tors(BunG) where m is

the order of Π. This follows from the construction or from the fact that

(152) is a Picard functor.
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4.1.5. For an abelian group A denote by A gerbes(X) the category

associated to the 2-category of A-gerbes on X (so A gerbes(X) is the

groupoid whose objects are A-gerbes on X and whose morphisms are 1-

morphisms up to 2-isomorphism). In 4.1.2–4.1.4 we have in fact constructed

a bi-Picard functor

Π∨ tors(X) × Π(1) gerbes(X) → µ∞ tors(153)

where µ∞ tors denotes the category of µ∞-torsors over a point. In this

subsection (which can be skipped by the reader) we give a “scientific

interpretation” of this construction.

In §1.4.11 from [Del73] Deligne associates a Picard category to a complex

K· of abelian groups such that Ki = 0 for i �= 0,−1. We denote this Picard

category by P (K·). Its objects are elements of K0 and a morphism from

x ∈ K0 to y ∈ K0 is an element f ∈ K−1 such that df = y − x.

In 4.1.4 we implicitly used the interpretation of Π∨ tors(X) as P (K·
S)

where K0
S = H1

c (X\S, Π∨) = the set of isomorphism classes of Π∨-torsors

on X trivialized over S, K−1
S = H0(S, Π∨). In 4.1.3 we implicitly used the

interpretation of Π(1) gerbes(X) as P (L·S) where L0
S = H2

S(X, Π(1)) = ΠS ,

L−1
S = H1(X\S, Π(1)) (L0

S parametrizes Π(1)-gerbes on X with a fixed

object over X\S). The construction of the bi-Picard functor (153) given in

4.1.4 uses only the canonical pairing K·
S × L·

S → µ∞[1].

For S′ ⊃ S we have canonical quasi-isomorphisms K ·
S′ → K ·

S and

L·
S → L·

S′ . The corresponding equivalences P (K ·
S′) → P (K ·

S) and P (L·
S) →

P (L·
S′) are compatible with our identifications of P (K ·

S) and P (K ·
S′) with

Π∨ tors(X) and also with the identifications of P (L·
S) and P (L·

S′) with

Π(1) gerbes(X). The morphism L·
S → L·

S′ is adjoint to K ·
S′ → K ·

S with

respect to the pairings K ·
S ×L·

S → µ∞[1] and K ·
S′ ×L·

S′ → µ∞[1]. Therefore

(153) does not depend on S.

Remarks
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(i) Instead of K ·
S and L·

S it would be more natural to use their images in

the derived category, i.e., (τ≤1RΓ(X, Π∨))[1] and (τ≥1RΓ(X, Π(1)))[2].

However the usual derived category is not enough: according to

§§1.4.13–1.4.14 from [Del73] the image of K · in the derived category

only gives P (K ·) up to equivalence unique up to non-unique isomor-

phism. So one needs a refined version of the notion of derived category,

which probably cannot be found in the literature.

(ii) From the non-degeneracy of the pairing K ·
S × L·

S → µ∞[1] one can

easily deduce that (153) induces an equivalence between Π∨ tors(X)

and the category of Picard functors Π(1) gerbes(X) → µ∞ tors (this is

a particular case of the equivalence (1.4.18.1) from [Del73]).

4.1.6. The definition of �E from 4.1.4 can be reformulated as follows. Let

S ⊂ X be finite and non-empty. For a fixed e ∈ ES we have the class c =

cl(E , e) ∈ H1
c (X\S, Π∨) and therefore a morphism λe : H1(X\S, Π(1)) →

µ∞ defined by λe(h) = (h, c)P . Denote by �E,e the λe-pushforward of the

H1(X\S, Π(1))-torsor φS from 4.1.2. The torsors �E,e for various e ∈ ES are

identified as follows.

Let ẽ = χe, χ ∈ (Π∨)S . Then λẽ(h)/λe(h) = (ResS(h), χ) where ResS is

the boundary morphism H1(X\S, Π(1)) → H2
S(X, Π(1)) = ΠS . So �E,ẽ/�E,e

is the pushforward of the ΠS-torsor (ResS)∗φS via χ : ΠS → µ∞. The

map ResS,F : φS,F → ΠS from 4.1.3 induces a canonical trivialization of

(ResS)∗φS and therefore a canonical isomorphism �E,e
∼−→ �E,ẽ. So we can

identify �E,e for various e ∈ ES and obtain a µ∞-torsor on BunG, which does

not depend on e ∈ ES . Clearly it does not depend on S. This is �E .

4.1.7. Let S ⊂ X be a non-empty finite set, OS :=
∏

x∈S

Ox, KS :=
∏

x∈S

Kx

where Ox is the completed local ring of x and Kx is its field of fractions.

Denote by S the formal neighbourhood of S and by BunG,S the moduli

scheme of G-bundles on X trivialized over S (in 2.3.1 we introduced BunG,x,

which corresponds to S = {x}). One defines an action of G(KS) on BunG,S
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extending the action of G(OS) by interpreting a G-bundle on X as a G-

bundle on X \ S with a trivialization of its pullback to SpecKS (see 2.3.4

and 2.3.7).

Let �E be the µ∞-torsor on BunG corresponding to a Π∨-torsor E on X (see

4.1.4, 4.1.6). Denote by �S
E the inverse image of �E on BunG,S . The action

of G(OS) on BunG,S canonically lifts to its action on �S
E . We claim that a

trivialization of E over S defines an action of G(KS) on �S
E extending the

above action of G(OS) and compatible with the action of G(KS) on BunG,S .

Indeed, once e ∈ ES is chosen �S
E can be identified with �S

E,e = (λe)∗φ̃S where

φ̃S is the pullback of φS to BunG,S and λe was defined in 4.1.6. G(KS) acts

on φ̃S because φS,F depends only on the restriction of F to X \S. So G(KS)

acts on �S
E,e.

The isomorphism �S
E,e

∼−→ �S
E,ẽ induced by the isomorphism �E,e

∼−→ �E,ẽ

from 4.1.6 is not G(KS)-equivariant. Indeed, if ẽ = χe, χ ∈ (Π∨)S , then

according to 4.1.6 �S
E,ẽ/�S

E,e is the pushforward of the ΠS-torsor (Res)∗φ̃S

via χ : ΠS → µ∞. The identification (Res)∗φ̃S = BunG,S ×ΠS from

4.1.6 becomes G(KS)-equivariant if G(KS) acts on ΠS via the boundary

morphism ϕ : G(KS) → H1(Spec KS ,Π(1)) = ΠS (we should check

the sign!!!). Therefore the trivial µ∞-torsor �S
E,ẽ/�S

E,e is equipped with a

nontrivial action of G(KS): it acts by χϕ : G(KS) → µ∞.

So to each e ∈ ES there corresponds an action of G(KS) on φ̃S , and if e

is replaced by χe, χ ∈ (Π∨)S = Hom(ΠS , µ∞), then the action is multiplied

by χϕ : G(KS) → µ∞.

Remark. By the way, we have proved that the coboundary map ϕ :

G(KS) → H1(Spec KS ,Π(1)) = ΠS is locally constant27 (indeed, G(KS)

acts on (Res)∗φ̃S as a group ind-scheme, so ϕ is a morphism of ind-

schemes, i.e., ϕ is locally constant. The proof can be reformulated as

follows. Without loss of generality we may assume that S consists of a

single point x. The group ind-scheme G(Kx) acts on BunG,x (see 2.3.3 –

27See also 4.5.4.
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2.3.4), so it acts on π0(BunG,x) = π0(BunG). One has the “first Chern

class” map c : π0(BunG) → Π. It is easy to show that c(gu) = ϕ(g)c(u) for

u ∈ π0(BunG), g ∈ G(Kx) where ϕ : G(Kx) → H1(Kx,Π(1)) = Π is the

coboundary map. So ϕ is locally constant.

4.1.8. Denote by G̃(KS)E the group generated by µ∞ and elements 〈g, e〉,
g ∈ G(KS), e ∈ ES , with the defining relations

〈g1g2, e〉 = 〈g1, e〉〈g2, e〉

〈g1, χe〉 = χ(ϕ(g)) · 〈g, e〉 , χ ∈ (Π∨)S = Hom(ΠS , µ∞)

α〈g, e〉 = 〈g, e〉α , α ∈ µ∞

G̃(KS)E is a central extension of G(KS) by µ∞. The extension is trivial: a

choice of e ∈ ES defines a splitting

σe : G(KS) → G̃(KS)E , g �→ 〈g, e〉 .(154)

It follows from 4.1.7 that G̃(KS)E acts on �S
E so that µ∞ ⊂ G̃(KS)E acts

in the obvious way and the action of G(KS) on �S
E corresponding to e ∈ ES

(see 4.1.7) comes from the splitting (154).

4.1.9. Consider the point of BunG,S corresponding to the trivial G-bundle

on X with the obvious trivialization over S. Acting by G(KS) on this

point one obtains a morphism f : G(KS) → BunG,S . Suppose that G is

semisimple. Then f induces an isomorphism.

G(KS)/G(AS) ∼−→ BunG,S(155)

where AS := H0(X \ S,OX) (see Theorem 1.3 from [La-So] and its proof in

§3 of loc.cit). It is essential that G(KS) and G(AS) are considered as group

ind-schemes and G(KS)/G(AS) as an fppf quotient, so (155) is more than a

bijection between the sets of C-points. We also have an isomorphism

G(OS) \ G(KS)/G(AS) ∼−→ BunG .(156)
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It is easy to see that the µ∞-torsors �E and �S
E defined in 4.1.4 and 4.1.7 can

be described as

�S
E = G̃(KS)E/G(AS)(157)

�E = G(OS) \ G̃(KS)E/G(AS)(158)

where G̃(KS)E is the central extension from 4.1.8. Here the embeddings

i : G(O) → G̃(KS)E and j : G(AS) → G̃(KS)E are defined by

i(g) = 〈g, e〉 , e ∈ ES(159)

j(g) = 〈g, e〉 · (ψ(g), cl(E , e))−1
P , e ∈ ES(160)

(we should check the sign!!!) where ψ is the boundary morphism G(AS) →
H1(X \S, Π(1)) and cl(E , e) ∈ H1

c (X \S, Π∨) is the class of (E , e) (the r.h.s.

of (159) and (160) do not depend on e).

Remark. The morphisms ϕ : G(KS) → ΠS and ψ : G(AS) →
H1(X \ S, Π(1)) induce a morphism

BunG = G(OS) \ G(KS)/G(AS) → ΠS/H1(X \ S,Π(1))(161)

where the r.h.s. of (161) is understood as a quotient stack. Clearly �E is the

pullback of a certain µ∞-torsor on the stack ΠS/H1(X \ S, Π(1)).

4.1.10. The reader can skip the remaining part of 4.1.

Let C be a groupoid. Denote by C the corresponding constant sheaf of

groupoids on the category of C-schemes equipped with the fppf topology. If

the automorphism groups of objects of C are finite then C is an algebraic

stack. By abuse of notation we will often write C instead of C (e.g., if C is

a set then C = C × Spec C is usually identified with C).

Examples. 1) If C has a single object and G is its automorphism group

then C is the classifying stack of G.

2) If C = P (K ·) (see 4.1.5) then C is the quotient stack of K0 with

respect to the action of K−1. So according to 4.1.5 the r.h.s. of (161)

is the stack corresponding to the groupoid Π(1) gerbes(X).
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3) If C = A gerbes(X) then C is the sheaf of groupoids associated to the

presheaf S �→ A gerbes(X × S).

Consider the groupoid Π(1) gerbes(X) as an algebraic stack. In 4.1.2 we

defined a canonical morphism

c̃ : BunG → Π(1) gerbes(X)(162)

that associates to a G-bundle F the Π(1)-gerbe of G̃-liftings of F (by the

way, the morphism (161) defined for semisimple G coincides with c̃). c̃

is a refinement of the Chern class map c : BunG → H2(X, Π(1)) = Π;

more precisely, c is the composition of c̃ and the canonical morphism

Π(1) gerbes(X) → H2(X, Π(1)) = the set of isomorphism classes of

Π(1) gerbes(X).

The µ∞-torsors on BunG constructed in 4.1.4 come from µ∞-torsors on

Π(1) gerbes(X). The following proposition shows that if G̃ is the universal

covering of G then any local system on BunG comes from a unique local

system on Π(1) gerbes(X).

4.1.11. Proposition. Suppose that G̃ is the universal covering of G (so

Π = π1(G) ). Then the morphism (162) induces an equivalence between

the fundamental groupoid of BunG and Π(1) gerbes(X).

Let us sketch a transcendental proof (since it is transcendental we

will not distinguish between Π and Π(1)). Denote by Xtop the C∞

manifold corresponding to X; for a G-bundle F on X denote by F top

the corresponding G-bundle on Xtop. Consider the groupoid Buntop
G whose

objects are G-bundles on Xtop and morphisms are isotopy classes of C∞

isomorphisms between G-bundles. It is easy to show that the natural functor

Buntop
G → Π gerbes(Xtop) = Π gerbes(X) is an equivalence. So we must

prove that for a G-bundle ξ on Xtop the stack of G-bundles F on X equipped

with an isotopy class of isomorphisms F top ∼−→ ξ is non-empty, connected,

and simply connected. This is clear if a G-bundle on X is interpreted as a

G-bundle on Xtop equipped with a ∂̄-connection.
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Remark. In 4.1.2 we defined the H1(X\S, Π(1))-torsor φS → BunG. If S =

{x} for some x ∈ X then H1(X\S, Π(1)) = H1(X, Π(1)), so φ{x} → BunG is

a H1(X, Π(1))-torsor. Proposition 4.1.11 can be reformulated as follows: if

G̃ is the universal covering of G then the Chern class map π0(BunG) → Π is

bijective and the restriction of φ{x} → BunG to each connected component

of BunG is a universal covering. This is really a reformulation because a

choice of x defines an equivalence.

Π(1) gerbes(X) ∼−→ Π × H1(X, Π(1)) tors(163)

(to a Π(1)-gerbe on X one associates its class in H2(X, Π(1)) = Π and the

H1(X, Π(1))-torsor of isomorphism classes of its objects over X \ {x}).

4.2. Pfaffians I. In this subsection we assume that for (Z/2Z)-graded

vector spaces A and B the identification of A⊗B with B ⊗A is defined by

a⊗b �→ (−1)p(a)p(b)b⊗a where p(a) is the parity of a. Following [Kn-Mu] for

a vector space V of dimension n < ∞ we consider det V as a (Z/2Z)-graded

space of degree n mod 2.

4.2.1. Let X be a smooth complete curve over C. An ω-orthogonal bundle

on X is a vector bundle Q equipped with a non-degenerate symmetric pairing

Q ⊗ Q → ωX . Denote by ω-Ort the stack of ω-orthogonal bundles on X.

There is a well known line bundle detRΓ on ω-Ort (its fiber over Q is

detRΓ(X,Q)). Laszlo and Sorger [La-So] construct a (Z/2Z)-graded line

bundle on ω-Ort (which they call the Pfaffian) and show that the tensor

square of the Pfaffian is detRΓ. For our purposes it is more convenient to

use another definition of Pfaffian. Certainly it should be equivalent to the

one from [La-So], but we did not check this.

We will construct a line bundle Pf on ω-Ort which we call the Pfaffian;

its fiber over an ω-orthogonal bundle Q is denoted by Pf(Q). The action

of −1 ∈ AutQ on Pf(Q) defines a (Z/2Z)-grading on Pf. Since Pf is a line

bundle, “grading” just means that there is a locally constant p : (ω-Ort) →
Z/2Z such that Pf(Q) has degree p(Q). Actually p(Q) = dimH0(Q) mod 2
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(the fact that dimH0(Q) mod 2 is locally constant was proved by M. Atiyah

and D. Mumford [At, Mu]).

For an ω-orthogonal bundle Q denote by Q− the same bundle Q equipped

with the opposite pairing Q ⊗ Q → ωX . Set Pf−(Q) := Pf(Q−). We will

define a canonical isomorphism Pf ⊗Pf− ∼−→ detRΓ. Define isomorphisms

f±i : Pf(Q) ∼−→ Pf(Q−) by f±i := (ϕ±i)∗ where i =
√
−1 and ϕi : Q ∼−→ Q−

is multiplication by i. Identifying Pf and Pf− by means of f±i we obtain

isomorphisms c±i : Pf⊗2 ∼−→ detRΓ such that (ci)−1c−i : Pf(Q)⊗2 ∼−→
Pf(Q)⊗2 is multiplication by (−1)p(Q).

Remarks

(i) If Q is an ω-orthogonal bundle then by Serre’s duality H1(X,Q) =

(H0(X,Q))∗, so det RΓ(X,Q) = detH0(X,Q)⊗2. The naive definition

would be Pf?(Q) := detH0(X,Q), but this does not make sense for

families of Q’s because dim H0(X,Q) can jump.

(ii) Let Q be the orthogonal direct sum of Q1 and Q2. Then

det RΓ(X,Q) = detRΓ(X,Q1) ⊗ det RΓ(X,Q2). From the definitions

of Pf and Pf ⊗Pf− ∼−→ det RΓ it will be clear that there is a canonical

ismorphism Pf(Q) ∼−→ Pf(Q1) ⊗ Pf(Q2) and the diagram

Pf(Q) ⊗ Pf(Q−) ∼−→ Pf(Q1) ⊗ Pf(Q−
1 ) ⊗ Pf(Q2) ⊗ Pf(Q−

2 )� �

� �

detRΓ(X,Q) ∼−→ det RΓ(X,Q1) ⊗ detRΓ(X,Q2)

is commutative. Therefore the isomorphisms c±i : Pf(Q)⊗2 ∼−→
det RΓ(X,Q) are compatible with decompositions Q = Q1 ⊕Q2.

(iii) One can define c± : Pf(Q)⊗2 ∼−→ det RΓ(X,Q) by c± = i±p(Q)2ci

where p(Q)2 is considered as an element of Z/4Z. Then c± does

not change if i is replaced by −i. However c± do not seem to be

naturalobjects, e.g., they are not compatible with decompositions

Q = Q1 ⊕Q2 (the “error” is (−1)p(Q1)p(Q2)).
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(iv) The construction of Pf(Q) works if C is replaced by any field k such

that char k �= 2. The case char k = 2 is discussed in 4.2.16.

4.2.2. A Lagrangian triple consists of an even-dimensional vector space

V equipped with a non-degenerate bilinear symmetric form ( , ) and

Lagrangian (= maximal isotropic) subspaces L+, L− ⊂ V . If X and Q
are as in 4.2.1 and Q′ ⊂ Q is a subsheaf such that H0(X,Q′) = 0 and

S := Supp(Q/Q′) is finite then one associates to (Q,Q′) a Lagrangian triple

(V ;L+, L−) as follows (cf. [Mu]):

(1) V := H0(X,Q′′/Q′) where Q′′ := Hom(Q′, ωX) ⊃ Q;

(2) L+ := H0(X,Q/Q′) ⊂ V ;

(3) L− := H0(X,Q′′) ⊂ V ;

(4) the bilinear form on V is induced by the natural pairing Q′′/Q′ ⊗
Q′′/Q′ → (j∗ωX\S)/ωX and the “sum of residues” map H0(X, (j∗ωX\S)/ωX) →
C where j is the embedding X\S → X. In this situation one can iden-

tify RΓ(X,Q) with the complex

0 → L− → V/L+ → 0(164)

concentrated in degrees 0 and 1. In particular H0(X,Q) = L+ ∩ L−,

H1(X,Q) = V/(L+ + L−) and Serre’s pairing between H0(X,Q) =

L+∩L− and H1(X,Q) = V/(L+ +L−) is induced by the bilinear form

on V .

4.2.3. For a Lagrangian triple (V ;L+, L−) set

det(V ;L+, L−) := detL+ ⊗ det L− ⊗ (detV )∗ .(165)

det(V ;L+, L−) is nothing but the determinant of the complex (164).

Formula (165) defines a line bundle det on the stack of Lagrangian triples. In

4.2.4 and 4.2.8 we will construct a Z/2Z-graded line bundle Pf on this stack

and a canonical isomorphism Pf ⊗Pf− ∼−→ det where Pf−(V ;L+, L−) :=

Pf(V −;L+, L−) and V − denotes V equipped with the form −( , ). The naive
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“definition” would be Pf?(V ;L+, L−) := det(L+∩L−) or Pf?(V ;L+, L−)∗ :=

det((L+ ∩ L−)∗) = det(V/(L+ + L−)) (cf. Remark (i) from 4.2.1).

4.2.4. For a Lagrangian triple (V ;L+, L−) define Pf(V ;L+, L−) as follows.

Denote by Cl(V ) the Clifford algebra equipped with the canonical (Z/2Z)-

grading (V ⊂ Cl(V ) is odd). Let M be an irreducible (Z/2Z)-graded Cl(V )-

module (actually M is irreducible even without taking the grading into

account). M is defined uniquely up to tensoring by a 1-dimensional (Z/2Z)-

graded vector space. Set ML− = M/L−M , ML+ := {m ∈ M |L+m = 0}.
Then ML+ and ML− are 1-dimensional (Z/2Z)-graded spaces. We set

Pf(V ;L+, L−) := ML+ ⊗ (ML−)∗ .(166)

In particular we can take M = Cl(V )/ Cl(V )L+. Then ML+ = C, so

Pf(V ;L+, L−)∗ = Cl(V )/(L− · Cl(V ) + Cl(V ) · L+) .(167)

Clearly (166) or (167) defines Pf as a (Z/2Z)-graded line bundle on the

stack of Lagrangian triples.28 The grading corresponds to the action of

−1 ∈ Aut(V ;L+, L−) on Pf(V ;L+, L−).

If V is the orthogonal direct sum of V1 and V2 then Cl(V ) is the tensor

product of the superalgebras Cl(V1) and Cl(V2). Therefore if (V 1;L1
+, L1

−)

and (V 2;L2
+, L2

−) are Lagrangian triples one has a canonical isomorphism

Pf(V 1 ⊕ V 2;L1
+ ⊕ L2

+, L1
− ⊕ L2

−) = Pf(V 1;L1
+, L1

−) ⊗ Pf(V 2;L2
+, L2

−) .

(168)

where ⊕ denotes the orthogonal direct sum.

Pf(V ;L+, L−) is even if and only if dim(L+ ∩ L−) is even. This follows

from (168) and statement (i) of the following lemma.

28In other words, passing from individual Lagrangian triples to families is obvious. This

principle holds for all our discussion of Pfaffians (only in the infinite-dimensional setting

of 4.2.14 we explicitly consider families because this really needs some care).
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4.2.5. Lemma.

(i) Any Lagrangian triple (V ;L+, L−) can be represented as an orthogonal

direct sum of Lagrangian triples (V 1;L1
+, L1

−) and (V 2;L2
+, L2

−) such

that L1
+ ∩ L1

− = 0, L2
+ = L2

−.

(ii) Moreover, if a subspace Λ ⊂ L+ is fixed such that L+ = Λ ⊕ (L+ ∩
L−) then one can choose the above decomposition (V ;L+, L−) =

(V 1;L1
+, L1

−) ⊕ (V 2;L2
+, L2

−) so that L1
+ = Λ.

Proof

(i) Choose a subspace P ⊂ V such that V = (L+ + L−) ⊕ P . Then set

V 2 := (L1 ∩ L2) ⊕ P , V 1 := (V 2)⊥.

(ii) Choose a subspace P ⊂ Λ⊥ such that Λ⊥ = L+ ⊕ P (this implies that

V = (L++L−)⊕P because Λ⊥/L+ → V/(L++L−) is an isomorphism).

Then proceed as above.

4.2.6. In this subsection (which can be skipped by the reader) we

construct a canonical isomorphism between Pf(V ;L+, L−) and the naive

Pf?(V ;L+, L−) from 4.2.3. Recall that Pf?(V ;L+, L−) := det(L+ ∩ L−),

so Pf?(V ;L+, L−)∗ = det((L+ ∩ L−)∗) = det(V/(L+ + L−)), it being

understood that the pairing detW ⊗det W ∗ → C, W := L+∩L−, is defined

by (e1 ∧ . . . ∧ ek) ⊗ (ek ∧ . . . ∧ e1) �→ 1 where e1, . . . , ek is a base of W and

e1, . . . , ek is the dual base of W ∗ (this pairing is reasonable from the “super”

point of view; e.g., it is compatible with decompositions W = W1 ⊕ W2).

To define the isomorphism Pf(V ;L+, L−) ∼−→ Pf?(V ;L+, L−) we use the

canonical filtration on Cl(V ) defined by

Cl0(V ) = C, Clk+1(V ) = Clk(V ) + V · Clk(V ) .(169)

We have Clk(V )/ Clk−1(V ) =
∧k V . Set r := dim(L+ ∩ L−). One

has the canonical epimorphism ϕ : Clr(V ) →
∧r V →

∧r(V/(L+ +

L−)) = det(V/(L+ + L−)) = Pf?(V ;L+, L−)∗. It is easy to deduce

from 4.2.5(i) that the canonical mapping Clr(V ) → Cl(V )/(L− · Cl(V ) +

Cl(V ) · L+) = Pf(V ;L+, L−)∗ factors through ϕ and the induced map
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f : Pf?(V ;L+, L−)∗ → Pf(V ;L+, L−)∗ is an isomorphism. f∗ is the desired

isomorphism Pf(V ;L+, L−) ∼−→ Pf?(V ;L+, L−).

Here is an equivalent definition. Let M be an irreducible (Z/2Z)-graded

Cl(V )-module. The canonical embedding det(L+ ∩ L−) ⊂
∧∗(L+ ∩ L−) =

Cl(L+ ∩ L−) ⊂ Cl(V ) induces a map det(L+ ∩ L−) ⊗ ML+∩L− → ML+∩L− ,

which is actually an isomorphism. It is easy to deduce from 4.2.5(i)

that the composition ML+ → ML+∩L− ∼−→ det(L+ ∩ L−) ⊗ ML+∩L− →
det(L+ ∩ L−) ⊗ ML− is an isomorphism. It induces an isomorphism

Pf(V ;L+, L−) := ML+ ⊗ (ML−)⊗−1 → det(L+ ∩ L−) = Pf?(V ;L+, L−),

which is actually inverse to the one constructed above.

4.2.7. Before constructing the isomorphism Pf ⊗Pf− ∼−→ det we will

construct a canonical isomorphism

Pf(V ⊕ V ∗;L+ ⊕ L⊥
+, L− ⊕ L⊥

−) ∼−→ det(V ;L+, L−)(170)

where V is a finite dimensional vector space without any bilinear form on it,

L± ⊂ V are arbitrary subspaces and V ⊕ V ∗ is equipped with the obvious

bilinear form (the l.h.s. of (170) makes sense because L±⊕L⊥
± is Lagrangian,

the r.h.s. of (170) is defined by (165)). Set

M =
∧

V ⊗ (detL+)∗ ,
∧

V := ⊕
i

∧iV .(171)

M is the irreducible Cl(V ⊕ V ∗)-module with ML+⊕L⊥
+ = C, so according

to (166) Pf(V ⊕ V ∗;L+ ⊕ L⊥
+, L− ⊕ L⊥

−) = (ML−⊕L⊥
−
)∗. Clearly

ML− =
∧

(V/L−) ⊗ (detL+)∗ and ML−⊕L⊥
−

= det(V/L−) ⊗ (detL+)∗ =

det(V ;L+, L−)∗ (see (165)). So we have constructed the isomorphism (170).

4.2.8. Now let (V ;L+, L−) be a Lagrangian triple. We will construct a

canonical isomorphism

Pf(V ;L+, L−) ⊗ Pf(V −;L+, L−) ∼−→ det(V ;L+, L−)(172)

where V − denotes V equipped with the bilinear form −( , ). If W is a finite

dimensional vector space equipped with a nondegenerate symmetric bilinear
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form then (V ⊗ W ;L+ ⊗ W, L− ⊗ W ) is a Lagrangian triple. (170) can be

rewritten as a canonical isomorphism.

det(V ;L+, L−) ∼−→ Pf(V ⊗ H;L+ ⊗ H, L− ⊗ H)(173)

where H denotes C2 equipped with the bilinear form
(

0 1
1 0

)
. On the other

hand (168) yields an isomorphism

Pf(V ;L+, L−) ⊗ Pf(V −;L+, L−) ∼−→ Pf(V ⊗ H ′;L+ ⊗ H ′, L− ⊗ H ′)

(174)

where H ′ denotes C2 equipped with the bilinear form
(

1 0
0 −1

)
. So an

isomorphism ϕ : H ′ ∼−→ H induces an isomorphism

ϕ∗ : Pf(V ;L+, L−) ⊗ Pf(V −;L+, L−) ∼−→ det(V ;L+, L−) .

Lemma. If ψ ∈ AutH ′ then

(ϕψ)∗ = (detψ)nϕ∗ , n = dim(L+ ∩ L−) .(175)

Proof. AutH ′ acts on the r.h.s. of (174) by some character χ : AutH ′ → C∗.

Any character of AutH ′ is of the form ψ �→ (detψ)m, m ∈ Z/2Z.

χ
(−1 0

0 1

)
= (−1)n, n := dim(L+ ∩ L−), because −1 ∈ Aut(V ;L+, L−) acts

on Pf(V ;L+, L−) as (−1)n (see 4.2.4). So m = n mod 2.

We define (172) to be ϕ∗ for any ϕ : H ′ ∼−→ H such that detϕ = 1.

Remarks

(i) (172) is compatible with decompositions of (V ;L+, L−) into orthogo-

nal direct sums; i.e., if one has such a decomposition (V ;L+, L−) =

(V 1;L1
+, L1

−)⊕(V 2;L2
+, L2

−) then the isomorphisms (172) for (V ;L+, L−),

(V 1;L1
+, L1

−), and (V 2;L2
+, L2

−) are compatible with (168) and

the canonical isomorphism det(V ;L+, L−) = det(V 1;L1
+, L1

−) ⊗
det(V 2;L2

+, L2
−).

(ii) (170) is compatible with decompositions of (V ;L+, L−) into direct

sums.
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4.2.9. In this subsection (which can be skipped by the reader) we give

an equivalent construction of (172). We will use the superalgebra anti-

isomorphism ∗ : Cl(V −) ∼−→ Cl(V ) identical on V (for any v1, . . . , vk ∈ V

one has (v1 . . . vk)∗ = (−1)k(k−1)/2vk . . . v1). We also use the canonical map

sTr : Cl(V ) = Cln(V ) → Cln(V )/ Cln−1(V ) = detV where n = dimV and

Clk(V ) is defined by (169). It has the “supertrace property”

sTr(ab) = (−1)p(a)p(b) sTr(ba)(176)

where a, b ∈ Cl(V ) are homogeneous of degrees p(a), p(b) ∈ Z/2Z. Indeed,

it is enough to prove (176) in the case a ∈ V , p(ab) = n mod 2; then

b ∈ Cln−1(V ) and (176) is obvious. Or one can check that sTr(a) coincides

up to a sign with the supertrace of the operator a : M → M where M is an

irreducible Cl(V )-module.

Now consider the map

det L− ⊗ Pf(V ;L+, L−)∗ ⊗ detL+ ⊗ Pf(V −;L+, L−)∗ → detV(177)

defined by a−⊗x⊗a+⊗y �→ sTr(a−xa+y∗). Here a± ∈ det L± ⊂ Λ∗(L±) =

Cl(L±) ⊂ Cl(V ), x ∈ Pf(V ;L+, L−)∗ = Cl(V )/(L− · Cl(V ) + Cl(V ) · L+),

y∗ ∈ Cl(V )/(L+ · Cl(V ) + Cl(V ) · L−), so (177) is well-defined. It is easy

to see (e.g., from 4.2.5 (i)) that (177) is an isomorphism. It induces an

isomorphism

Pf(V ;L+, L−) ⊗ Pf(V −;L+, L−) ∼−→ detL+ ⊗ detL− ⊗ (detV )∗ = det(V ;L+, L−)

One can show that this isomorphism equals (172).

4.2.10. Let X and Q be as in 4.2.1 and Q′ ⊂ Q as in 4.2.2. To these data we

have associated a Lagrangian triple (V ;L+, L−) such that det(V ;L+, L−) =

detRΓ(X,Q) (see 4.2.2). Set PfQ′(Q) := Pf(V ;L+, L−). According to 4.2.9

we have a canonical isomorphism PfQ′(Q) ⊗ PfQ′(Q−) ∼−→ det RΓ(X,Q).

To define Pf(Q) it is enough to define a compatible system of isomorphisms

PfQ′(Q) ∼−→ PfQ̃′(Q) for all pairs (Q′, Q̃′) such that Q′ ⊂ Q̃′. To define
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Pf(Q)⊗Pf(Q−) ∼−→ detRΓ(X,Q) it suffices to prove the commutativity of

PfQ′(Q) ⊗ PfQ′(Q−) ∼−→ detRΓ(X,Q)∼−→

PfQ̃′(Q) ⊗ PfQ̃′(Q−) ∼−→

The Lagrangian triple (Ṽ ; L̃+, L̃−) corresponding to Q̃′ is related to the

triple (V ;L+, L−) corresponding to Q′ as follows: if Λ = H0(X, Q̃′/Q′) ⊂
H0(X,Q/Q′) = L+ then

Ṽ = Λ⊥/Λ, L̃+ = L+/Λ ⊂ Ṽ , L̃− = L− ∩ Λ⊥ ↪→ Ṽ(178)

(notice that Λ ∩ L− = H0(X, Q̃′) = 0). So it remains to do some linear

algebra (see 4.2.11). It is easy to check that our definition of Pf(Q) and

Pf(Q) ⊗ Pf(Q−) ∼−→ detRΓ(X,Q) makes sense for families of Q’s.

4.2.11. Let (V ;L+, L−) be a Lagrangian triple, Λ ⊂ L+ a subspace such

that Λ ∩ L− = 0. Then (Ṽ ; L̃+, L̃−) defined by (178) is a Lagrangian

triple. In this situation we will say that (Ṽ ; L̃+, L̃−) is a subquotient of

(V ;L+, L−). It is easy to show that a subquotient of a subquotient is

again a subquotient. So we can consider the category T with Lagrangian

triples as objects such that a morphism from (V ;L+, L−) to (V ′;L′
+, L′

−)

is defined to be an isomorphism between (V ;L+, L−) and a subquotient

of (V ′;L′
+, L′

−). Consider also the category C whose objects are finite

complexes of finite dimensional vector spaces and morphisms are quasi-

isomorphisms. Denote by 1I the category whose objects are (Z/2Z)-graded

1-dimensional vector spaces and morphisms are isomorphisms preserving

the grading. The complex (164) considered as an object of C depends

functorially on (V ;L+, L−) ∈ T : if (Ṽ ; L̃+, L̃−) is the subquotient of

(V ;L+, L−) corresponding to Λ ⊂ L+ then we have the quasi-isomorphism

L− −→ V/L+

↪→ ↪→
L̃− −→ Ṽ /L̃+ = Λ⊥/L+
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Applying the functor det : C → 1I from [Kn-Mu] we see that

det(V ;L+, L−) ∈ 1I depends functorially on (V ;L+, L−) ∈ T . If (Ṽ ; L̃+, L̃−)

is the subquotient of (V ;L+, L−) corresponding to Λ ⊂ L+ then the iso-

morphism between det(V ;L+, L−) = (detL+) ⊗ (detL−) ⊗ (detV )∗ and

det(Ṽ ; L̃+, L̃−) = (det L̃+) ⊗ (det L̃−) ⊗ (det Ṽ )∗ comes from the natural

isomorphisms det L+ = det Λ ⊗ det L̃+, detL− = det L̃− ⊗ det(V/Λ⊥),

detV = det Λ ⊗ det Ṽ ⊗ det(V/Λ⊥).

As explained in 4.2.10 we have to define Pf as a functor T → 1I and to show

that the isomorphism Pf(V ;L+, L−) ⊗ Pf−(V ;L+, L−) ∼−→ det(V ;L+, L−)

from 4.2.8 is functorial.

If (Ṽ ; L̃+, L̃−) is the subquotient of (V ;L+, L−) corresponding to Λ ⊂ L+

then

Pf(V ;L+, L−)∗ = Cl(V )/(L− · Cl(V ) + Cl(V ) · L+)

Pf(Ṽ ; L̃+, L̃−)∗ = Cl(Λ⊥)/((L− ∩ Λ⊥) · Cl(Λ⊥) + Cl(Λ⊥) · L+) .

So the embedding Cl(Λ⊥) → Cl(V ) induces a mapping

Pf(Ṽ ; L̃+, L̃−)∗ → Pf(V ;L+, L−)∗ .(179)

This defines Pf∗ as a functor T → {(Z/2Z)-graded 1-dimensional spaces}
(it is easy to see that composition corresponds to composition). It remains

to show that

a) (179) is an isomorphism,

b) (179) is compatible with the pairings Pf(V ;L+, L−)∗⊗Pf(V −;L+, L−)∗ ∼−→
det(V ;L+, L−)∗ and Pf(Ṽ ; L̃+, L̃−)∗⊗Pf(Ṽ −;L+, L−)∗ ∼−→ det(Ṽ ; L̃+, L̃−)∗

from 4.2.8.

b) can be checked directly and a) follows from b). One can also prove a)

by reducing to the case where (Ṽ ; L̃+, L̃−) is a maximal subquotient, (i.e.,

Λ ⊕ (L+ ∩ L−) = L+) and then using 4.2.5 (ii).

4.2.12. Let E be a vector bundle on X. Then E ⊕ (E∗ ⊗ ωX) has the

obvious structure of ω-orthogonal bundle. We will construct a canonical



142 A. BEILINSON AND V. DRINFELD

isomorphism

Pf(E ⊕ (E∗ ⊗ ωX)) ∼−→ det RΓ(X, E) .(180)

Choose a subsheaf E′ ⊂ E and a locally free sheaf E′′ ⊃ E so that

H0(X, E′) = 0, H1(X, E′′) = 0, and E′′/E′ has finite support. Set

V := H0(X, E′′/E′), L+ := H0(X, E′/E) ⊂ V , L− := H0(X, E′′) ⊂ V .

Then RΓ(X, E) can be identified with the complex 0 → L− → V/L+ → 0

and detRΓ(X, E) with det(V ;L+, L−). On the other hand the Pfaffian

of Q := E ⊕ (E∗ ⊗ ωX) can be computed using the subsheaf Q′ :=

E′ ⊕ ((E′′)∗ ⊗ ωX) ⊂ Q. Then PfQ′(Q) equals the l.h.s. of (170). So

(170) yields the isomorphism (180). One checks that (180) does not depend

on E′ and E′′.

4.2.13. The notion of Lagrangian triple has a useful infinite dimensional

generalization. First let us recall some basic definitions.

Definition. A Tate space is a complete topological vector space having a

base of neighbourhoods of 0 consisting of commensurable vector subspaces

(i.e., dimU1/(U1 ∩ U2) < ∞ for any U1, U2 from this base).

Remark. Tate spaces are implicit in his remarkable work [T]. In fact,

the approach to residues on curves developed in [T] can be most naturally

interpreted in terms of the canonical central extension of the endomorphism

algebra of a Tate space, which is also implicit in [T]. A construction of the

Tate extension can be found in 7.13.18.

Let V be a Tate space. A vector subspace P ⊂ V is bounded if for

every open subspace U ⊂ V there exists a finite set {v1, . . . , vn} ⊂ V such

that P ⊂ U + Cv1 + . . . Cvn. The topological dual of V is the space V ∗

of continuous linear functionals on V equipped with the (linear) topology

such that orthogonal complements of bounded subspaces of V form a base

of neighbourhoods of 0 ∈ V ∗. Clearly V ∗ is a Tate space and the canonical

morphism V → (V ∗)∗ is an isomorphism.
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Example (coordinate Tate space). Let I be a set. We say that A, B ⊂ I

are commensurable if A\(A∩B) and B\(B∩A) are finite. Commensurability

is an equivalence relation. Suppose that an equivalence class A of subsets

A ⊂ I is fixed. Elements of A are called semi-infinite subsets. Denote

by C((I,A)) the space of formal linear combinations
∑
i

ciei where ci ∈ C

vanish when i /∈ A for some semi-infinite A. This is a Tate vector space

(the topology is defined by subspaces C[[A]] := {
∑
i∈A

ciei} where A is semi-

infinite). The space dual to C((I,A)) is C((I,A′)) where A′ consists of

complements to subsets from A. Any Tate vector space is isomorphic to

C((I,A)) for appropriate I and A; such an isomorphism is given by the

corresponding subset {ei} ⊂ V called topological basis of V .

A c-lattice in V is an open bounded subspace. A d-lattice∗) in V is a

discrete subspace Γ ⊂ V such that Γ + P = V for some c-lattice P ⊂ V . If

W ⊂ V is a d-lattice (resp. c-lattice) then there is a c-lattice (resp. d-lattice)

W ′ ⊂ V such that V = W ⊕ W ′. If W ⊂ V is a d-lattice (resp. c-lattice)

then W⊥ ⊂ V ∗ is also a d-lattice (resp. c-lattice) and (W⊥)⊥ = W .

A (continuous) bilinear form on a Tate space V is said to be nondegenerate

if it induces a topological isomorphism V → V ∗. Let V be a Tate space

equipped with a nondegenerate symmetric bilinear form. A subspace L ⊂ V

is Lagrangian if L⊥ = L.

Definition. A Tate Lagrangian triple consists of a Tate space V equipped

with a nondegenerate symmetric bilinear form, a Lagrangian c-lattice L+ ⊂
V , and a Lagrangian d-lattice L− ⊂ V .

Example. Let Q be an ω-orthogonal bundle on X. If x ∈ X let Q ⊗ Ox

(resp. Q ⊗ Kx) denote the space of global sections of the pullback of Q
to Spec Ox (resp. SpecKx). Q ⊗ Kx is a Tate space equipped with the

nondegenerate symmetric bilinear form Res( , ). For every non-empty finite

∗)c and d are the first letters of “compact” and “discrete”.
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S ⊂ X we have the Tate Lagrangian triple

V := ⊕
x∈S

(Q⊗ Kx) , L+ := ⊕
x∈S

(Q⊗ Ox) , L− := Γ(X\S,Q) .(181)

Let (V ;L+, L−) be a Tate Lagrangian triple. Then for any c-lattice Λ ⊂
L+ such that Λ ∩ L− = 0 one has the finite-dimensional Lagrangian triple

(Ṽ ; L̃+, L̃−) defined by (178). As explained in 4.2.11 Pf(Ṽ ; L̃+, L̃−) and

det(Ṽ ; L̃+, L̃−) do not depend on Λ. Set Pf(V ;L+, L−) := Pf(Ṽ ; L̃+, L̃−),

det(V ;L+, L−) := det(Ṽ ; L̃+, L̃−). Equivalently one can define det(V ;L+, L−)

to be the determinant of the complex (164) and Pf(V ;L+, L−) can be de-

fined by (166) or (167) (the Cl(V )-module M from (166) should be assumed

discrete, which means that {v ∈ V |vm = 0} is open for every m ∈ M).

Example. If (V ;L+, L−) is defined by (181) then Pf(V ;L+, L−) = Pf(Q),

det(V ;L+, L−) = detRΓ(X,Q).

The constructions from 4.2.7 and 4.2.8 make sense in the Tate situation

with the following obvious changes: a) in 4.2.7 one should suppose that L+

is a c-lattice and L− is a d-lattice, b) (171) should be replaced by the

following formula:

M = lim
−→
U

∧
(V/U) ⊗ det(L+/U)∗(182)

where U belongs to the set of c-lattices in L+. The r.h.s. of (182) is the

fermionic Fock space, i.e., the direct sum of semi-infinite powers of V (cf.

Lecture 4 from [KR] and references therein).

Remark. The expression for Pf(Q) in terms of the triple (181) can be

reformulated as follows. For x ∈ X consider the abelian Lie superalgebras

aOx ⊂ aKx such that the odd component of aOx (resp. aKx) is Q⊗Ox (resp.

Q ⊗ Kx) and the even components are 0. The bilinear symmetric form on

Q ⊗ Kx defines a central extension 0 → C → ãKx → aKx → 0 with a

canonical splitting over aOx . The Clifford algebra Cl(Q⊗Kx) is the twisted

universal enveloping algebra U ′aKx and Mx := Cl(Q ⊗ Kx)/ Cl(Q ⊗ Kx) ·
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(Q⊗ Ox) is the vacuum module over U ′aKx . According to (167) Pf(Q)∗ is

the space of coinvariants of the action of Γ(X\S,Q) on ⊗
x∈S

Mx.

4.2.14. In this subsection we discuss families of Tate Lagrangian triples.

Let R be a commutative ring. We define a Tate R-module to be a topological

R-module isomorphic to P ⊕ Q∗ where P and Q are (infinite) direct sums

of finitely generated projective R-modules (a base of neighbourhoods of

0 ∈ P ⊕ Q∗ is formed by M⊥ ⊂ Q∗ for all possible finitely generated

submodules M ⊂ Q). This bad∗) definition is enough for our purposes.

In fact, we mostly work with Tate R-modules isomorphic to V0⊗̂R where V0

is a Tate space.

The discussion of Tate linear algebra from 4.2.13 remains valid for Tate

R-modules if one defines the notions of c-lattice and d-lattice as follows.

Definition. A c-lattice in a Tate R-module V is an open bounded

submodule P ⊂ V such that V/P is projective. A d-lattice in V is a

submodule Γ ⊂ V such that for some c-lattice P ⊂ V one has Γ ∩ P = 0

and V/(Γ + P ) is a projective module of finite type.∗)

Now if 1
2 ∈ R we can define the notion of Tate Lagrangian triple just as

in 4.2.13 (of course, if 1
2 /∈ R one should work with quadratic forms instead

of bilinear ones, which is easy). The Pfaffian of a Tate Lagrangian triple

(V ;L+, L−) over R is defined as in 4.2.13 with the following minor change:

to pass to the finite-dimensional Lagrangian triple (Ṽ ; L̃+, L̃−) defined by

(178) one has to assume that Λ ⊂ L+ is a c-lattice such that Λ ∩ L− = 0

and V/(Λ + L−) is projective (these two properties are equivalent to the

following one: Λ⊥ + L− = V ).

Example. Let D ⊂ X ⊗ R be a closed subscheme finite over Spec R that

can be locally defined by one equation (i.e., D is an effective relative Cartier

∗)A projective R((t))-module of finite rank is not necessarily a Tate module in the

above sense. Our notion of Tate R-module is not local with respect to Spec R. There are

also other drawbacks.

∗)Then this holds for all c-lattices P ′ ⊂ P .
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divisor). Let Q be a vector bundle on X ⊗ R. Suppose that the morphism

D → Spec R is surjective. Then

V := lim
←−
m

lim
−→
n

H0(X ⊗ R,Q(nD)/Q(−mD))

is a Tate R-module∗) ,

L+ := lim
←−
m

H0(X ⊗ R,Q/Q(−mD)) ⊂ V

is a c-lattice, and

L− := H0((X ⊗ R) \ D,Q) ⊂ V

is a d-lattice. If Q is an ω-orthogonal bundle then (V ;L+, L−) is a

Lagrangian triple and Pf(Q) = Pf(V ;L+, L−) (cf. 4.2.13).

4.2.15. Denote by B the groupoid of finite dimensional vector spaces over C

equipped with a nondegenerate symmetric bilinear form. In this subsection

(which can be skipped by the reader) we construct canonical isomorphisms

Pf(V ⊗ W ;L+ ⊗ W, L− ⊗ W ) ∼−→ Pf(V ;L+, L−)⊗ dim W ⊗ |det W |⊗p(V ;L+,L−) ,

(183)

Pf(Q⊗ W ) ∼−→ Pf(Q)⊗ dim W ⊗ |det W |⊗p(Q)(184)

where W ∈ B, (V ;L+, L−) is a (Tate) Lagrangian triple, Q is an ω-

orthogonal bundle on X, |detW | is the determinant of W considered as a

space (not super-space!), and p(V ;L+, L−), p(Q) ∈ Z/2Z are the parities of

Pf(V ;L+, L−), Pf(Q). |detW |⊗n makes sense for n ∈ Z/2Z because one has

the canonical isomorphism |det W |⊗2 ∼−→ C, (w1∧. . .∧wr)⊗2 �→ det(wi, wj).

∗)In fact, V is isomorphic to V0⊗̂R for some Tate space V0 over C. Indeed, we can

assume that R is finitely generated over C and then apply 7.12.11. We need 7.12.11 in

the case where R is finitely generated over C and the projective module from 7.12.11 is a

direct sum of finitely generated modules; in this case 7.12.11 follows from Serre’s theorem

(Theorem 1 of [Se]; see also [Ba68], ch.4, §2) and Eilenberg’s lemma [Ba63].
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To define (183) and(184) notice that B is a tensor category with ⊕ as

a tensor “product” and both sides of (183) and (184) are tensor functors

from B to the category of 1-dimensional superspaces (to define the r.h.s. of

(184) as a tensor functor rewrite it as |Pf(Q)|⊗ dim W ⊗ (detW )⊗p(Q) where

|Pf(Q)| is obtained from Pf(Q) by changing the (Z/2Z)-grading to make it

even and detW is the determinant of W considered as a superspace).

We claim that there is a unique way to define (183) and (184) as

isomorphisms of tensor functors so that for W = (C, 1) (183) and (184)

equal id. Here 1 denotes the bilinear form (x, y) �→ xy, x, y ∈ C.

To prove this apply the following lemma to the tensor functor F obtained

by dividing the l.h.s. of (183) or (184) by the r.h.s.

Lemma. Every tensor functor F : B → {1-dimensional vector spaces}
is isomorphic to the tensor functor F1 defined by F1(W ) = L⊗ dim W ,

L := F (C, 1). There is a unique isomorphism F
∼−→ F1 that induces the

identity map F (C, 1) → F1(C, 1).

Proof. For every W ∈ B the functor F induces a homomorphism fW :

AutW → C∗. Since AutW is an orthogonal group fW (g) = (det g)n(W )

for some n(W ) ∈ Z/2Z. Clearly n(W ) = n does not depend on W . Set

W1 := (C, 1). F maps the commutativity isomorphism
(

0 1
1 0

)
: W1 ⊕ W1 →

W1 ⊕ W1 to id. So n = 0, i.e., fW is trivial for every W . The rest is clear

because the semigroup |B| of isomorphism classes of objects of B is Z+.

Remarks

(i) (183) was implicitly used in 4.2.8.

(ii) We will use (183) in 4.2.16.

4.2.16. In this subsection (which can certainly be skipped by the reader) we

explain what happens if C is replaced by a field k of characteristic 2. In this

case one must distinguish between quadratic forms (see [Bourb59], §3, n◦4)

and symmetric bilinear forms. In the definition of Lagrangian triple V should

be equipped with a nondegenerate quadratic form. So in the definition of
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ω-orthogonal bundle Q should be equipped with a nondegenerate quadratic

form Q → ωX (since k has characteristic 2 nondegeneracy implies that the

rank of Q is even). The construction of Pf ⊗Pf− ∼−→ det from 4.2.8 has to

be modified. If (V ;L+, L−) is a Lagrangian triple and W is equipped with

a nondegenerate symmetric bilinear form then (V ⊗W ;L+ ⊗W, L−⊗W ) is

a Lagrangian triple. The bilinear forms
(

1 0
0 −1

)
and

(
0 1
1 0

)
are not equivalent

in characteristic 2, but one can use (183) for W = H and W = H ′ to

construct Pf ⊗Pf− ∼−→ det. Finally we have to construct (183) and (184)

in characteristic 2. Let us assume for simplicity that k is perfect. Then the

characteristic property ∗) of the isomorphisms (183) and (184) is formulated

just as in 4.2.15, but the proof of their existence and uniqueness should be

modified. The semigroup |B| (see the end of the proof of the lemma from

4.2.15) is no longer Z+; it has generators a and b with the defining relation

a + b = 3a (a corresponds to the matrix (1) of order 1 and b corresponds to(
0 1
1 0

))
. So the group corresponding to B is Z, which is enough.

4.3. Pfaffians II.

4.3.1. Fix an n-dimensional vector space W over C and a nondegenerate

symmetric bilinear form ( ) on it. To simplify notation we write On and

SOn instead of O(W ) and SO(W ).

Let F be an SOn-torsor on X. The corresponding rank n vector bundle

WF carries the bilinear form ( )F , and we have a canonical isomorphism

detWF = OX ⊗ det W . Let L ∈ ω1/2(X), i.e., L is a square root of ωX .

Then WF ⊗ L is an ω-orthogonal bundle, so Pf(WF ⊗ L) makes sense (see

4.2). Consider the “normalized” Pfaffian

PfL,F := Pf(WF ⊗ L) ⊗ Pf(W ⊗ L)⊗−1(185)

∗)To formulate this property in the non-perfect case one should consider B as a stack

rather than a groupoid.
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and the “normalized” determinant

ν(F) := detRΓ(X, WF ) ⊗ detRΓ(X,OX ⊗ W )⊗−1.(186)

As explained in 4.2.1 there are canonical isomorphisms c±i : Pf⊗2 ∼−→
detRΓ. Using, e.g., ci one obtains an isomorphism∗)

PfL,F
⊗2 ∼−→ νL(F)(187)

where

νL(F) := detRΓ(X, WF ⊗ L) ⊗ detRΓ(X, W ⊗ L)⊗−1.(188)

Construction 7.2 from [Del87] yields a canonical isomorphism

νL(F) = ν(F) ⊗
〈
detWF ⊗ (detW )⊗−1,L

〉
Since detWF = OX ⊗ det W one has νL(F) = ν(F) and

PfL,F
⊗2 = ν(F).(189)

When F varies PfL,F and ν(F) become fibers of line bundles on BunSOn

which we denote by PfL and ν.

Denote by ν1/2(BunSOn) the category of square roots of ν. We have the

functor

Pf : ω1/2(X) → ν1/2(BunSOn)(190)

defined by L �→ PfL.

ω1/2(X) and ν1/2(BunSOn) are Torsors over the Picard categories

µ2 tors(X) and µ2 tors(BunSOn). We have the Picard functor �Spin :

µ2 tors(X) → µ2 tors(BunSOn); this is the functor � = �G̃ from 4.1 in

the particular case G = SOn, G̃ = Spinn, Π = Z/2Z. In 4.3.8–4.3.15

we will show that the functor Pf : ω1/2(X) → ν1/2(BunSOn) has a canonical

∗)So the isomorphism (187)=(189) depends on the choice of a square root of -1. This

dependence disappears if one multiplies (187) by i±p(F)2 where p is the canonical map

BunSOn → π0(BunSOn) = π1(SOn) = Z/2Z and p(F)2 ∈ Z/4Z. We prefer not to do it

for the reason explained in Remark (iii) from 4.2.1.



150 A. BEILINSON AND V. DRINFELD

structure of �Spin-affine functor. Before doing it we show in 4.3.2–4.3.7 that

for a finite S ⊂ X the action of SOn(KS) on BunSOn,S defined in 4.1.7 lifts

to an action of a certain central extension of SOn(KS) on the pullback of

PfL to BunSOn,S . Once this action is introduced it is easy to characterize

the �Spin-affine structure on the functor Pf essentially by the SOn(KS)-

invariance property (see 4.3.8–4.3.10).

4.3.2. Let V be a Tate space equipped with a nondegenerate symmetric

bilinear form of even type, i.e., there exists a Lagrangian c-lattice L ⊂ V

(see 4.2.13); if dimV < ∞ this means that dimV is even. Denote by O(V )

the group of topological automorphisms of V preserving the form. Let us

remind the well known construction of a canonical central extension

0 → C∗ → Õ(V ) → O(V ) → 0 .(191)

Let M be an irreducible (Z/2Z)-graded discrete module over the Clifford

algebra Cl(V ) (discreteness means that {v ∈ V | vm = 0} is open for every

m ∈ M). Then M is unique up to tensoring by a 1-dimensional (Z/2Z)-

graded space. So there is a natural projective representation of O(V ) in M .

(191) is the extension corresponding to this representation, i.e.,

Õ(V ) := {(g, ϕ)| g ∈ O(V ), ϕ ∈ AutC M, ϕ(vm) = g(v) · ϕ(m) for m ∈ M} .

Clearly Õ(V ) does not depend on the choice of M (in fact AutC M is

the group of invertible elements of the natural completion of Cl(V )). If

(g, ϕ) ∈ Õ(V ) then ϕ is either even or odd. Let χ(g) ∈ Z/2Z denote the

parity of ϕ. Then χ : O(V ) → Z/2Z is a homomorphism.

The preimages of −1 ∈ O(V ) in Õ(V ) are not central. Indeed, if

ϕ : M → M , ϕ(m) = m for even m and ϕ(m) = −m for odd m then

[−1] := (−1, ϕ) ∈ Õ(V ) and

[−1] · g̃ = (−1)χ(g) · g̃ · [−1] , g ∈ O(V )(192)

where g̃ denotes a preimage of g in Õ(V ).
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O(V ) and AutC M have natural structures of group ind-schemes. More

precisely, the functors that associate to a C-algebra R the sets O(V ⊗̂R) and

AutC(M ⊗R) are ind-schemes (if dim V = ∞ then they can be represented

as a union of an uncountable filtered family of closed subschemes.) So Õ(V )

is a group ind-scheme.

Denote by Lagr(V ) the set of Lagrangian c-lattices in V . It has a natural

structure of ind-scheme: Lagr(V ) = lim
−→

Lagr(Λ⊥/Λ) where Λ belongs to the

set of isotropic c-lattices in V (so an R-point of Lagr(V ) is a Lagrangian

c-lattice in V ⊗̂R in the sense of 4.2.14). Denote by P = PM the line bundle

on Lagr(V ) whose fiber over L ∈ Lagr(V ) equals ML := {m ∈ M |Lm = 0}.
The action of O(V ) on Lagr(V ) canonically lifts to an action of Õ(V ) on P.

Lagr(V ) has two connected components distinguished by the parity of

the 1-dimensional (Z/2Z)-graded space ML, L ∈ Lagr(V ). The proof of this

statement is easily reduced to the case where dim V is finite (and even). The

same argument shows that L1, L2 ∈ Lagr(V ) belong to the same component

if and only if dim(L1/(L1 ∩L2)) is even. Clearly the connected components

of Lagr(V ) are invariant with respect to g ∈ O(V ) if and only if χ(g) = 0.

Therefore χ : O(V ) → Z/2Z is a morphism of group ind-schemes.

Let us prove that (191) comes from an exact sequence of group ind-

schemes

0 → Gm → Õ(V ) → O(V ) → 0 .(193)

We only have to show that the morphism Õ(V ) → O(V ) is a Gm-torsor.

To this end fix L ∈ Lagr(V ) and set M = Cl(V )/ Cl(V )L, so that the fiber

of P = PM over L equals C. Define f : O(V ) → Lagr(V ) by f(g) = gL.

Set P ′ := P \ {zero section}; this is a Gm-torsor over Lagr(V ). It is easy to

show that the natural morphism Õ(V ) → f∗P ′ is an isomorphism, so Õ(V )

is a Gm-torsor over O(V ).
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Remark. Let L ∈ Lagr(V ). Then (193) splits canonically over the stabilizer

of L in O(V ): if g ∈ O(V ), gL = L, then there is a unique preimage of g in

Õ(V ) that acts identically on ML.

4.3.3. Set O := C[[t]], K := C((t)). Denote by ωO the (completed) module

of differentials of O. Fix a square root of ωO, i.e., a 1-dimensional free O-

module ω
1/2
O equipped with an isomorphism ω

1/2
O ⊗ ω

1/2
O

∼−→ ωO. Let W

have the same meaning as in 4.3.1. We will construct a central extension of

On(K) := O(W ⊗ K) considered as a group ind-scheme over C.

Set ω
1/2
K := ω

1/2
O ⊗O K, ωK := ωO ⊗O K. Consider the Tate space

V := ω
1/2
K ⊗ W . The bilinear form on W induces a K-bilinear form

V × V → ωK . Composing it with Res : ωK → C one gets a nondegenerate

symmetric bilinear form V ×V → C of even type. Restricting the extension

(193) to On(K) ↪→ O(V ) one gets a central extension

0 → Gm → Õn(K) → On(K) → 0 .(194)

It splits canonically over On(O) ⊂ On(K) (use the remark at the end of 4.3.2

for L = ω
1/2
O ⊗ W ⊂ V ). The group Autω

1/2
O = µ2 acts on the extension

(194) preserving the splitting over On(O).

4.3.4. Lemma. The automorphism of Õn(K) induced by −1 ∈ Autω
1/2
O

maps g̃ ∈ Õn(K) to (−1)θ(g)g̃ where g is the image of g̃ in On(K) and

θ : On(K) → K∗/(K∗)2 = Z/2Z is the spinor norm.

Proof. According to (192) we only have to show that χ(g) = θ(g) for

g ∈ On(K) ⊂ O(V ). According to the definition of θ (see [D71], ch. II, §7) it

suffices to prove that if g is the reflection with respect to the orthogonal

complement of a non-isotropic x ∈ Kn then χ(g) equals the image of

(x, x) ∈ K∗ in K∗/(K∗)2 = Z/2Z. We can assume that x ∈ On, x �∈ tOn.

L := ω
1/2
O ⊗ W is a Lagrangian c-lattice in V , so χ(g) is the parity of

dimL/(L ∩ gL) = dimO/(x, x)O.

Remarks
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(i) Instead of using reflections one can compute the restriction of χ to

a split Cartan subgroup of SOn(K) and notice that χ(g) = 0 for

g ∈ On(C).

(ii) The restriction of θ to SOn(K) is the boundary morphism

SOn(K) → H1(K, µ2) = Z/2Z(195)

for the exact sequence 0 → µ2 → Spinn → SOn → 0.

(iii) If g ∈ On(K) = O(W ⊗ K) then dim(W ⊗ O)/((W ⊗ O) ∩ g(W ⊗ O))

is even if and only if θ(g) = 0. This follows from the proof of Lemma

4.3.4.

4.3.5. Consider the restriction of the extension (194) to SOn(K):

0 → Gm → ˜SOn(K) → SOn(K) → 0 .(196)

It splits canonically over SOn(O). The extension (196) depends on the

choice of ω
1/2
O , so one should rather write ˜SOn(K)C where C is a square

root of ωO. Let C′ be another square root of ωO, then C′ = C ⊗ A where

A is a µ2-torsor over Spec O (or over Spec C, which is the same). Consider

the (trivial) extension of Z/2Z by Gm such that A is the µ2-torsor of its

splittings. Its pullback by (195) is a (trivial) extension

0 → Gm → ˜SOn(K)A → SOn(K) → 0(197)

equipped with a splitting over SOn(O) (in 4.1.8 we have already introduced

this extension in a more general situation).

Lemma 4.3.4 yields a canonical isomorphism between ˜SOn(K)C′ and the

sum of the extensions ˜SOn(K)C and ˜SOn(K)A. It is compatible with the

splittings over SOn(O).

4.3.6. Let S, OS , and KS have the same meaning as in 4.1.7. Fix

L ∈ ω1/2(X) and denote by ω
1/2
KS

the space of sections of the pullback of

L to Spec KS . Then proceed as in 4.3.3: set V := ω
1/2
KS

⊗ W , define the
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scalar product on V using the “sum of residues” map ωKS
→ C, embed

SOn(KS) into O(V ) and finally get a central extension

0 → Gm → ˜SOn(KS)L → SOn(KS) → 0(198)

with a canonical splitting over SOn(OS).

Remark. (198) is the “super-sum” of the extensions (196) for K = Kx,

x ∈ S. Let us explain that if Gi, i ∈ I, are groups equipped with morphisms

θi : Gi → Z/2Z and G̃i are central extensions of Gi by Gm then the super-

sum of these extensions is the extension of
⊕
i

Gi by Gm obtained from the

usual sum by adding the pullback of the standard extension

0 → Gm → A →
⊕
i∈I

(Z/2Z) → 0

where A is generated by Gm and elements ei, i ∈ I, with the defining

relations e2
i = 1, cei = eic for c ∈ Gm, eiej = (−1) · ejei for i �= j. In our

situation θx : SOn(Kx) → Z/2Z is the spinor norm.

If L ,L′ ∈ ω1/2(X) then L′ = L⊗E where E is a µ2-torsor. It follows from

4.3.5 that there is a canonical isomorphism between ˜SOn(KS)L′ and the sum

of the extensions ˜SOn(KS)L and ˜SOn(KS)E (see 4.1.8 for the definition of
˜SOn(KS)E).

4.3.7. In 4.3.1 we defined the line bundles PfL on BunSOn , L ∈ ω1/2(X).

Denote by PfSL the pullback of PfL to the scheme BunSOn S defined in 4.1.7.

We have the obvious action of SOn(OS) × Gm on PfSL ( λ ∈ Gm acts as

multiplication by λ). We are going to extend it to an action of ˜SOn(KS)L
on PfSL compatible with the action of SOn(KS) on BunSOn,S .

Let u ∈ BunSOn,S , g̃ ∈ ˜SOn(KS)L. Denote by F and F ′ the SO(W )-

bundles corresponding to u and gu where g ∈ SOn(KS) is the image of

g̃. We must define an isomorphism PfL,F
∼−→ PfL,F ′ , i.e., an isomorphism

Pf(WF ⊗L) ∼−→ Pf(WF ′⊗L). According to 4.2.13 it suffices to construct an

isomorphism Pf(V ;L+, L−) ∼−→ Pf(V ;L+, L′
−) where V is the Tate space

from 4.3.6, L+ = ω
1/2
OS

⊗ W ⊂ V , and L− , L′
− ⊂ V are discrete Lagrangian
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subspaces such that L′
− = gL−. According to (166) this is equivalent to

constructing an isomorphism f : (ML−)⊗−1 ∼−→ (MgL−)⊗−1. We define f

to be induced by the action of g̃ ∈ Õ(V ) on M .

Attention: λ ∈ Gm ⊂ ˜SOn(KS)L acts on PfSL as multiplication by λ−1.

4.3.8. As explained in 4.3.1 our goal is to define a canonical �Spin-affine

structure on the functor (190). This means that for L ∈ ω1/2(X) and a

µ2-torsor E on X we must define an isomorphism

PfL⊗�Spin
E

∼−→ PfL′ , L′ := L ⊗ E .(199)

We must also check certain compatibility properties for the isomorphisms

(199).

To simplify notation we will write �E instead of �Spin
E . Let S ⊂ X be finite.

In 4.1.7–4.1.8 we constructed an action of the central extension ˜SOn(KS)E
on �S

E := the pullback of �E to BunSOn,S . So it follows from 4.3.6–4.3.7 that
˜SOn(KS)L′ acts both on PfSL⊗�S

E and PfSL′ . Recall that the fibers of both

sides of (199) over the trivial SOn-bundle equal C.

4.3.9. Theorem. There is a unique isomorphism (199) such that for every S

the corresponding isomorphism PfSL⊗�S
E

∼−→ PfSL′ is ˜SOn(KS)L′-equivariant

and the isomorphism between the fibers over the trivial SOn-bundle induced

by (199) is identical.

The proof will be given in 4.3.11–4.3.13. See §5.2 from [BLaSo] for a short

proof of a weaker statement.

4.3.10. Proposition. The isomorphisms (199) define an �Spin-affine structure

on the functor Pf : ω1/2(X) → ν1/2(BunSOn).

The proof will be given in 4.3.15.

4.3.11. Let us start to prove Theorem 4.3.9. The uniqueness of (199) is

clear if n > 2: in this case SOn is semisimple, so one has the isomorphism

(155) for G = SOn, S �= ∅. If n = 2 the action of SOn(KS) on BunSOn,S is
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not transitive, but SOn over the adeles acts transitively on lim
←−
S

BunSOn,S(C),

which is enough for uniqueness.

While proving the existence of (199) we will assume that n > 2. The

case n = 2 can be treated using the embedding SO2 ↪→ SO3 and the

corresponding morphism BunSO2 → BunSO3 or using the remark at the

end of 4.3.14.

Consider the SOn(KS)-equivariant line bundle CS := PfSL⊗�S
E ⊗ (PfSL′)∗

on BunSOn,S . The stabilizer of the point of BunSOn,S corresponding to the

trivial SOn-bundle with the obvious trivialization over S equals SOn(AS),

AS := H0(X \S,OX). So the action of SOn(KS) on CS induces a morphism

fS : SOn(AS) → Gm. It suffices to prove that fS is trivial for all S (then

for S �= ∅ one can use (155) to obtain a SOn(KS)-equivariant trivialization

of CS and of course these trivializations are compatible with each other).

Denote by Σ the scheme of finite subschemes of X (so Σ is the disjoint

union of the symmetric powers of X). AS , OS , and KS make sense for a

non-necessarily reduced∗) S ∈ Σ (e.g., OS is the ring of functions on the

completion of X along S) and the rings AS , OS , KS are naturally organized

into families (i.e., there is an obvious way to define three ring ind-schemes

over Σ whose fibers over S ∈ Σ are equal to AS , OS , KS respectively).

It is easy to show that the morphisms fS form a family (i.e., they come

from a morphism of group ind-schemes over Σ). Clearly if S ⊂ S′ then the

restriction of fS′ to SOn(AS) equals fS . In 4.3.12–4.3.13 we will deduce

from these two facts that fS = 1.

4.3.12. Let Y be a separated scheme of finite type over C and R a C-algebra.

Set Yrat(R) = lim
−→
U

Mor(U, Y ) where the limit is over all open U ⊂ X⊗R such

that the fiber of U over any point of SpecR is non-empty. In other words,

elements of Yrat(R) are families of rational maps X → Y parameterized by

∗)This is important when S varies. For a fixed S the rings AS , OS and KS depend

only on Sred.
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Spec R. The functor Yrat is called the space of rational maps X → Y . It is

easy to show that Yrat is a sheaf for the fppf topology, i.e., a “space” in the

sense of [LMB93].

We have the spaces Y (AS), S ∈ Σ, which form a family (i.e., there is a

natural space over Σ whose fiber over each S equals Y (AS)). So a regular

function on Yrat defines a family of regular functions fS on Y (AS), S ∈ Σ,

such that for S ⊂ S′ the pullback of fS′ to Y (AS) equals fS . It is easy to

see that a function on Yrat is the same as a family of functions fS with this

property.

4.3.13. Proposition. Let G be a connected algebraic group.

(i) Every regular function on Grat is constant. In particular every group

morphism Grat → Gm is trivial.

(ii) Moreover, for every C-algebra R every regular function on Grat ⊗R is

constant (i.e., an element of R).

Proof. Represent G as
⋃
i

Ui where Ui are open sets isomorphic to (A1 \
{0})r × As (e.g., let U ⊂ G be the big cell with respect to some Borel

subgroup, then G is covered by a finite number of sets of the form gU ,

g ∈ G). One has the open covering Grat =
⋃
i
(Ui)rat and (Ui)rat∩(Uj)rat �= ∅.

So it is enough to prove the proposition for G = (Gm)r × (Ga)s. Moreover,

it suffices to prove (ii) for Ga and Gm.

Consider, e.g., the Gm case. Choose an ample line bundle A on X and

set Vn := H0(X,A⊗n), V ′
n := Vn \ {0}. Define πn : V ′

n × V ′
n → (Gm)rat by

(f, g) �→ f/g. A regular function ϕ on (Gm)rat⊗R defines a regular function

π∗
nϕ on (V ′

n × V ′
n)⊗R, which is invariant with respect to the obvious action

of Gm on V ′
n × V ′

n. For n big enough dimVn > 1 and therefore π∗
nϕ extends

to a Gm-invariant regular function on (Vn × Vn) ⊗ R, which is necessarily a

constant. So ϕ is constant.

4.3.14. This subsection is not used in the sequel (except the definition of

GRASG needed in 5.3.10).
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Let G be a connected algebraic group. The following approach to BunG

seems to be natural.

Denote by GRASG the space of G-torsors on X equipped with a

rational section. The precise definition of this space is quite similar to the

definition of Yrat from 4.3.12. We would call GRASG the big Grassmannian

corresponding to G and X because for a fixed finite S ⊂ X the space

of G-bundles on X trivialized over X \ S can be identified with the ind-

scheme G(KS)/G(OS) =
∏

x∈X

G(Kx)/G(Ox) (see 5.3.10), and G(Kx)/G(Ox)

is called the affine Grassmannian or loop Grassmannian (see 4.5 or [MV]).

The morphism π : GRASG → BunG is a Grat-torsor for the smooth

topology (the existence of a section S → GRASG for some smooth surjective

morphism S → BunG is obvious if the reductive part of G equals GLn, SLn,

or Spn; for a general G one can use [DSim]).

Consider the functor

π∗ : Vect(BunG) → Vect(GRASG)(200)

where Vect denotes the category of vector bundles. It follows from 4.3.13

that (200) is fully faithful. One can show that for any scheme T every vector

bundle on Grat×T comes from T . This implies that (200) is an equivalence.

Remark. Our construction of (199) can be interpreted as follows: we

constructed an isomorphism between the pullbacks of the l.h.s. and r.h.s.

of (199) to GRASSOn , then we used the fact that (200) is fully faithful. It

was not really necessary to use the isomorphism (155). So the construction

of (199) also works in the case of SO2.

4.3.15. Let us prove Proposition 4.3.10. The isomorphisms (199) are

compatible with each other (use the uniqueness statement from 4.3.9). It

remains to show that the tensor square of (199) equals the composition

Pf⊗2
L

∼−→ νL
∼−→ ν

∼−→ νL′
∼−→ Pf⊗2

L′(201)

where νL is defined by (188).
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Fix an SOn-torsor F on X and its trivialization over X \ S for some

non-empty finite S ⊂ X. Using the trivialization we will compute the

isomorphisms Pf⊗2
L,F

∼−→ Pf⊗2
L′,F induced by (199) and (201).

Recall that PfL,F := Pf(WF ⊗ L) ⊗ Pf(W ⊗ L)⊗−1. According to 4.2.13

Pf(WF ⊗ L) = Pf(V ;L+, L−), Pf(W ⊗ L) = Pf(V ;L0
+, L−)

where V = LKS
⊗W , L− = Γ(X \S,L⊗W ), L0

+ = LOS
⊗W , and L+ is the

space of sections of the pullback of WF ⊗L to Spec OS (we use the notation

of 4.3.6). Using (166) one gets

PfL,F = ML+ ⊗ (ML0
+)∗(202)

where M is an irreducible Z/2Z-graded discrete module over Cl(V ). PfL′,F

has a similar description in terms of V ′, L′
+, (L0

+)′, L′
− where V ′ = L′

KS
⊗W ,

etc. Fix a trivialization of the µ2-torsor E from 4.3.8 over S. It yields a

trivialization of E over Spec OS and therefore an identification

(V ′, L′
+, (L0

+)′) = (V, L+, L0
+).(203)

Since L− is not involved in (202) we obtain an isomorphism PfL,F
∼−→

PfL′,F . It is easy to show that it coincides with the one induced by (199)

(notice that the trivialization of F over X \ S and the trivialization of E
over S induce a trivialization of �Spin

E over F because the l.h.s. of (150) has

a distinguished element).

Now we have to show that the isomorphism Pf⊗2
L,F

∼−→ Pf⊗2
L′,F induced by

(201) is the identity provided PfL,F and PfL′,F are identified with the r.h.s.

of (202).

The trivialization of F over X \ S yields an isomorphism νL(F) ∼−→
d(L0

+, L+) where d(L0
+, L+) is the relative determinant, i.e., d(L0

+, L+) =

det(L+/U) ⊗ det(L0
+/U)⊗−1 for any c-lattice U ⊂ L ∩ L0

+. We have a

similar identification νL′(F) = d((L0
+)′, L′

+). The isomorphism νL(F) ∼−→
νL′(F) from (201) is defined in [Del87] as follows. One chooses any

isomorphism f between the pullbacks of L and L′ to SpecOS . f yields
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an isomorphism f∗ : (V, L+, L0
+) ∼−→ (V ′, L′

+, (L0
+)′) and therefore an

isomorphism d(L0
+, L+) ∼−→ d(L′

+, (L0
+)′), which actually does not depend

on the choice of f . It is convenient to define f using the above trivialization

of the µ2-torsor E = L′⊗L⊗−1 over Spec OS . Then f∗ coincides with (203).

Thus we have identified νL(F) and νL′(F) with d(L0
+, L+) so that the

isomorphism νL(F) ∼−→ νL′(F) from (201) becomes the identity map. We

have identified both PfL,F and PfL′,F with the r.h.s. of (202). It remains

to show that the isomorphism (187) and its analog for L′ induce the same

isomorphism

(ML+ ⊗ (ML0
+)∗)⊗2 ∼−→ d(L0

+, L+)(204)

According to 4.2.8 and 4.2.13 the isomorphism (204) induced by (187)

can be described as follows. We have the canonical isomorphism

NL+⊗H ⊗ (NL0
+⊗H)∗ ∼−→ d(L0

+, L)(205)

where N is an irreducible (Z/2Z)-graded discrete module over the Clifford

algebra Cl(V ⊕ V ∗) = Cl(V ⊕ V ) = Cl(V ⊗H) and H denotes C2 equipped

with the bilinear form
(

0 1
1 0

)
(to construct (205) take for N the r.h.s. of

(182)). On the other hand, P := M ⊗ M is an irreducible (Z/2Z)-graded

discrete module over Cl(V )⊗Cl(V ) = Cl(V ⊗H ′′) where H ′′ denotes C2 with

the bilinear form
(

1 0
0 1

)
. Rewrite the l.h.s. of (204) as PL+⊗H′′⊗(PL0

+⊗H′′
)∗.

So an orthogonal isomorphism ψ : H ′′ ∼−→ H induces an isomorphism (204).

To get the isomorphism (204) induced by (187) we must normalize ψ by

detψ = i (or −i ?? we should check!).

Since L− is not involved in the above description the analog of (187) for

L′ induces the same isomorphism (204), QED.

4.3.16. This subsection and 4.3.17 will be used in 4.4.14 (end of the proof

of the horizontality theorem 2.7.3) and in the proof of Theorem 5.4.5 (which

is the main result of this work). However the reader can skip them for the

moment.
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As usual, we set O := C[[t]], K := C((t)). Fix L ∈ ω1/2(X), i.e., L is a

square root of ωX . Fix also a square root of ωO and denote it by ω
1/2
O . Then

one defines a 2-sheeted covering X∧
2 of the scheme X∧ from 2.6.5. Recall

that an R-point of X∧ is an R-morphism α : Spec(R⊗̂O) → X ⊗ R whose

differential does not vanish over any point of SpecR. Denote by LR the

pullback of L to X⊗R. By definition, the fiber of X∧
2 (R) over γ ∈ X∧(R) is

the set of isomorphisms H0(Spec R⊗̂O, α∗LR) ∼−→ R⊗̂ω
1/2
O ) in the groupoid

of square roots of R⊗̂ωO.

The group ind-scheme Aut2 O := Aut(O, ω
1/2
O ) introduced in 3.5.2 acts

on X∧
2 by transport of structure.

Let M be the scheme from 2.8.1 in the particular case G = SO(W ) =

SOn. Denote by M∧
2 the fiber product of M and X∧

2 over X (so M∧
2 is

a 2-sheeted covering of the scheme M∧ from 2.8.3). Then the semidirect

product Aut2 O � SOn(K) acts on M∧
2 . Indeed, M∧

2 is the fiber product of

M∧ and X∧
2 over X∧, and Aut2 O � SOn(K) acts on the diagram

M∧

↓
X∧

2 −→ X∧

(the action of AutO�SOn(K) on M∧ was defined in 2.8.4; Aut2 O�SOn(K)

acts on X∧
2 and X∧ via its quotients Aut2 O and AutO).

Denote by Pf∧L the pullback to M∧
2 of the line bundle PfL on BunSOn

defined in 4.3.1. We will lift the action of Aut2 O � SOn(K) on M∧
2 to an

action of Aut2 O � ˜SOn(K) on Pf∧L, where ˜SOn(K) is the central extension

(196) corresponding to ω
1/2
O . The action of Aut2 O on Pf∧L is clear because

Aut2 O acts on M∧
2 considered as a scheme over BunSOn . On the other

hand, ˜SOn(K) acts on PfL,x̂ :=the restriction of Pf∧L to the fiber of M∧
2

over x̂ ∈ X∧
2 . Indeed, this fiber equals BunSOn,x where x is the image of

x̂ in X, and by 4.3.7 the central extension ˜SOn(Kx)L acts on the pullback

of PfL to BunSOn,x. This extension depends only on Lx :=the pullback

of L to Spec Ox. Since x̂ defines an isomorphism between (O, ω
1/2
O ) and
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(Ox, H0(Spec Ox,Lx)) we get an isomorphism ˜SOn(Kx)L
∼−→ ˜SOn(K) and

therefore the desired action of ˜SOn(K).

4.3.17. Proposition.

(i) The action of ˜SOn(K) on Pf∧L,x̂, x̂ ∈ X∧
2 , comes from an (obviously

unique) action of ˜SOn(K) on Pf∧L.

(ii) The actions of Aut2 O and ˜SOn(K) on Pf∧L define an action of

Aut2 O � ˜SOn(K).

Remark. Statement (ii) can be interpreted in the spirit of 2.8.2: the action

of Aut2 O yields a connection along X on π∗ PfL where π is the morphism

M → BunG, and the compatibility of the action of Aut2 O with that of
˜SOn(K) means that the action on π∗ PfL of a certain central extension

J̃mer(SOn)L is horizontal.

Proof. To define the action of Aut2 O � ˜SOn(K) on Pf∧L with the desired

properties we proceed as in 4.3.7. Let R be a C-algebra. Consider an R-

point u of M∧
2 and an R-point g̃ of Aut2 O� ˜SOn(K). Recall that SOn is an

abbreviation for SO(W ). Denote by F and F ′ the SO(W )-torsors on X⊗R

corresponding to u and gu where g is the image of g̃ in Aut2 O � SOn(K).

We have to define an isomorphism

Pf(WF ⊗ LR) ∼−→ Pf(WF ′ ⊗ LR)(206)

where LR is the pullback of L to X ⊗ R.

Set V := ω
1/2
O ⊗O K ⊗ W . This is a Tate space over C equipped with a

nondegenerate symmetric bilinear form (see 4.3.3). By 4.2.14

Pf(WF ⊗ LR) = Pf(V ⊗̂R;L+⊗̂R, Lu
−)(207)

where L+ := ω
1/2
O ⊗ W ⊂ V (so L+ is a Lagrangian c-lattice in V ) and the

Lagrangian d-lattice Lu
− ⊂ V ⊗̂R is defined as follows. The point u ∈ M∧

2 (R)

is a quadruple (α,F , γ, f) where α, F , γ have the same meaning as in

2.8.4 (in our special case G = SO(W )) and f is an isomorphism between
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H0(Spec R⊗̂K, α∗LR) and R⊗̂ω
1/2
O in the groupoid of square roots of R⊗̂ωO.

Let Γα have the same meaning as in 2.8.4. Then

Lu
− := H0((X ⊗ R) \ Γα, WF ⊗ LR) ⊂ H0(Spec R⊗̂K, α∗WF ⊗ α∗LR)

ϕ
∼−→V ⊗̂R

(the isomorphism ϕ is induced by γ and f).

Taking (207) into account we see that constructing (206) is equivalent to

defining an isomorphism

Pf(V ⊗̂R;L+ ⊗ R, Lu
−) ∼−→ Pf(V ⊗̂R;L+ ⊗ R, Lgu

− ) .(208)

The group ind-scheme Aut2 O�SO(W ⊗K) acts on V in the obvious way,

and it is easy to see that Lgu
− = gLu

−. By (166) the l.h.s. of (208) is inverse to

(M ⊗R)L− whereM is the Clifford module Cl(V )/ Cl(V )L+ and L− := Lu
−.

So it remains to construct an isomorphism (M ⊗R)L−
∼−→ (M ⊗R)gL− . We

define it to be induced by the action∗) of g̃ on M ⊗ R.

4.4. Half-forms on BunG.

4.4.1. Let G be semisimple. Fix a G-invariant non-degenerate symmetric

bilinear form on g. Set n := dim g and write SOn instead of SO(g).

The adjoint representation G → SO(g) induces a morphism f : BunG →
BunSOn . For L ∈ ω1/2(X) set λ′

L := f∗ PfL where PfL is the line bundle

from 4.3.1; so the fiber of λ′
L over F ∈ BunG equals Pf(gF⊗L)⊗Pf(g⊗L)⊗−1.

The isomorphism (189) induces an isomorphism

(λ′
L)⊗2 = ω	

BunG
(209)

Here ω	
BunG

is the normalized canonical bundle (146); according to 2.1.1

the fiber of ω	
BunG

over F ∈ BunG equals det RΓ(X, gF ) ⊗ (detRΓ(X, g ⊗
OX))⊗−1.

∗)Recall that g is an R-point of Aut2 O � ˜SOn(K) = Aut2 O � ˜SO(W ⊗ K). By the

definition of ˜SOn(K) it acts on M . The group ind-scheme Aut2 O acts on (V, L+) and

therefore on M .
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4.4.2. Consider the functor

λ′ : ω1/2(X) → (ω	)1/2(BunG),(210)

L �→ λ′
L. By 4.3.10 λ′ is affine with respect to the Picard functor

�̃′ : µ2 tors(X) → µ2 tors(BunG) that sends a µ2-torsor E on X to �̃′E :=

the pullback to BunG of the torsor �Spin
E on BunSOn .

4.4.3. Proposition. �̃′ = �′ where �′ is the composition of the functor

µ2 tors(X) → Z tors(X) induced by (56) and the functor � : Z tors(X) →
µ∞ tors(BunG) constructed in 4.1.1–4.1.4. Here Z = π1(G)∨ =the center of
LG (see the Remark from 4.1.1).

Assuming the proposition we define a canonical �-affine functor

λ : Z torsθ(X) → µ∞ torsθ(BunG)(211)

by E · L �→ λE·L := �E · λ′
L, E ∈ Z tors(X), L ∈ ω1/2(X). (Attention:

normalization problem!!!???)

To prove Proposition 4.4.3 notice that �̃′ is the functor (152) corresponding

to the extension of G by µ2 induced by the spinor extension of SO(g).

Therefore �̃′ is the composition of � : Z tors(X) → µ∞ tors(BunG) and the

functor µ2 tors(X) → Z tors(X) induced by the morphism µ2 → Z = π1(G)∨

dual to π1(G) → π1(SO(g)) = Z/2Z. So it suffices to prove the following.

4.4.4. Lemma. The morphism π1(G) → π1(SO(g)) = Z/2Z is dual to the

morphism (56) for the group LG.

Proof. We have the canonical isomorphism f : P/PG
∼−→ Hom(π1(G)(1), µ∞)

where PG is the group of weights of G and P is the group of weights of its

universal covering G̃; a weight λ ∈ P is a character of the Cartan subgroup

H̃ ⊂ G̃ and f(λ) is its restriction to π1(G)(1) ⊂ H̃. Let M be a spinor rep-

resentation of so(g). Then G̃ acts on M and π1(G)(1) ⊂ G̃ acts according to

some character χ ∈ Hom(π1(G)(1), µ∞). According to the definition of (56)

(see also the definition of λ# in 3.4.1) the lemma just says that χ = f(ρ)

where ρ ∈ P is the sum of fundamental weights.
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Let b ⊂ g be a Borel subalgebra. Choose a b-invariant flag 0 ⊂ V1 ⊂
. . . ⊂ Vn = g such that dimVk = k, V ⊥

k = Vn−k, and b is one of the Vk. Let

b′ be the stabilizer of this flag in so(g). This is a Borel subalgebra of so(g)

containing b. Let m ∈ M be a highest vector with respect to b′. Then Cm

is b-invariant and the corresponding character of b equals one half of the

sum of the positive roots, i.e., ρ. So χ = f(ρ).

Remark. According to Kostant (cf. the proof of Lemma 5.9 from [Ko61])

the g-module M is isomorphic to the sum of 2[r/2] copies of the irreducible

g-module with highest wight ρ (where r is the rank of g).

4.4.5. Our construction of (211) slightly depends on the choice of a scalar

product on g (see 4.4.1). Since there are several “canonical” scalar products

on g the reader may prefer the following version of (211).

To simplify notation let us assume that G is simple. Then the space of

invariant symmetric bilinear forms on g is 1-dimensional. Denote it by β.

Choose a square root of β, i.e., a 1-dimensional vector space β1/2 equipped

with an isomorphism β1/2 ⊗ β1/2 ∼−→ β. So g ⊗ β1/2 carries a canonical

bilinear form. Consider the representation G → SO(g ⊗ β1/2) and then

proceed as in 4.4.1–4.4.3 (e.g., now the fiber of λ′
L over F ∈ BunG equals

Pf(gF ⊗L⊗ β1/2)⊗Pf(g⊗L⊗ β1/2)⊗−1). The functor (211) thus obtained

slightly depends on the choice of β1/2. More precisely, −1 ∈ Autβ1/2 acts

on λ′
L and therefore on λM, M ∈ Z torsθ(X), as multiplication by (−1)p

where p : BunG → Z/2Z is the composition

BunG → π0(BunG) = π1(G) → π1(SO(g)) = Z/2Z.

Do we want to consider λM as a SUPER-sheaf??!

4.4.6. We have associated to L ∈ Z torsθ(X) a line bundle λL on BunG

(see 4.4.1–4.4.3). For x ∈ X denote by λL,x the pullback of λL to BunG,x.

In 4.4.7–4.4.10 we will define a central extension G̃(Kx)L of G(Kx) that acts

on λL,x. In 4.4.11–4.4.13 we consider the Lie algebra of G̃(Kx)L.
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4.4.7. Let O, K and ωO have the same meaning as in 4.3.3. Fix a square

root L of ωO. Then we construct a central extension of group ind-schemes

0 → Gm → G̃(K)L → G(K) → 0(212)

as follows. L defines the central extension (196). Fix a non-degenerate

invariant symmetric bilinear form∗) on g and write SOn instead of SO(g),

n := dim g. We define (212) to be the central extension of G(K) opposite

to the one induced from (196) via the adjoint representation G → SO(g) =

SOn. The extension (212) splits over G(O).

Remark. In the case G = SOr our notation is ambiguous: G̃(K) �=
˜SOr(K). Hopefully this ambiguity is harmless.

4.4.8. Let L ∈ ω1/2(X), x ∈ X. According to 4.4.7 the restriction of L
to Spec Ox defines a central extension of G(Kx), which will be denoted by

G̃(Kx)L. Denote by λ′
L,x the pullback to BunG,x of the line bundle λ′

L from

4.4.1. It follows from 4.3.7 that the action of G(Kx) on BunG,x lifts to a

canonical action of G̃(Kx)L on λ′
L. The subgroup Gm ⊂ G̃(Kx)L acts on

λ′
L in the natural way (see the definition of G̃(Kx)L in 4.4.7 and the last

sentence of 4.3.7). The action of G(Ox) ⊂ G̃(Kx)L on λ′
L,x is the obvious

one.

4.4.9. In 4.4.7 we defined a functor

ω1/2(O) → {central extensions of G(K) by Gm}(213)

where ω1/2(O) is the groupoid of square roots of ωO. The l.h.s. of (213)

is a µ2-category in the sense of 3.4.4. The r.h.s. of (213) is a Z-category,

Z := π1(G)∨ = Hom(π1(G), Gm). Indeed, the coboundary morphism∗)

G(K) → H1(K, πet
1 (G)) = π1(G) = Z∨(214)

∗)Instead of fixing the form on g the reader can proceed as in 4.4.5.
∗)A priori (214) is a morphism of abstract groups, but according to the Remark from

4.1.7 it is, in fact, a morphism of group ind-schemes. See also 4.5.4.
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induces a morphism∗)

Z → Hom(G(K), Gm) ,(215)

i.e., a Z-structure on the r.h.s. of (213). Using the morphism µ2 → Z

defined by (56) we consider the r.h.s. of (213) as a µ2-category. Then (213)

is a µ2-functor (use 4.3.4, Remark (ii) from 4.3.4, and 4.4.4). So by 3.4.4

the functor (213) yields a Z-functor

Z torsθ(O) → {central extensions of G(K) by Gm} .(216)

The central extension of G(K) corresponding to L ∈ Z torsθ(O) by (213)

will be denoted by G̃(K)L. The extension

0 → Gm → G̃(K)L → G(K) → 0(217)

splits over G(O).

Remarks

(i) According to 3.4.7 (i) the Z-structure on the r.h.s. of (213) yields a

Picard functor

Z tors(O) = Z tors → {central extensions of G(K) by Gm} .(218)

Explicitly, (218) is the composition of the canonical equivalence

{trivial extensions of Z∨ by Gm} = Z tors

an extension �→ the Z-torsor of its splittings
(219)

and the functor from the l.h.s. of (219) to the r.h.s. of (218) induced

by (214). In other words, (218) is the functor E �→ G̃(K)E from 4.1.8.

(ii) By 3.4.7 (iv) the functor (216) is affine with respect to the Picard

functor (218).

∗)In fact, an isomorphism (see 4.5.4)
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4.4.10. Let L ∈ Z torsθ(X). According to 4.4.9 the image of L in

Z torsθ(Ox) defines a central extension of G(Kx), which will be denoted

by G̃(Kx)L. Denote by λL,x the pullback of λL to BunG,x. The action of

G(Kx) on BunG,x lifts to a canonical action of G̃(Kx)L on λL,x (use 4.3.7–

4.3.9, 4.1.8, and the Remarks from 4.4.9). G(Ox) × Gm ⊂ G̃(Kx)L acts on

λL,x in the obvious way.

4.4.11. Proposition. The Lie algebra extension corresponding to (217) is the

extension

0 → C → g̃ ⊗ K → g ⊗ K → 0

from 2.5.1.

Proof. The Lie algebra extension corresponding to (217) does not depend

on L ∈ Z torsθ(O), so instead of (217) one can consider (212) and finally

(194). So it is enough to use the Kac–Peterson–Frenkel theorem which says

that the Lie algebra extension

0 → C → õn(K) → on(K) → 0(220)

corresponding to (194) is defined by the cocycle (u, v) �→ 1
2 Res Tr(du, v),

u, v ∈ on(K). In fact, to use [KP] or Proposition I.3.11 from [Fr81] one

has to use the following characterization of õn(K) (which does not involve

the group Õn(K)): let V have the same meaning as in 4.3.3 and let M be

an irreducible discrete module over Cl(V ), then one has a representation of

õn(K) in M compatible with the action of õn(K) on Cl(V ) and such that

1 ∈ C ⊂ õn(K) acts on M identically.

4.4.12. Let λL and λL,x have the same meaning as in 4.4.10. According to

4.4.10 and 4.4.11 the action of g ⊗ Kx on BunG,x lifts to a canonical action

of g̃ ⊗ Kx on λL,x whose restriction to C× (g⊗Ox) ⊂ g̃ ⊗ Kx is the obvious

one; in particular 1 ∈ C ⊂ g̃ ⊗ Kx acts as multiplication by 1.

λL is equipped with an isomorphism λ⊗2n
L

∼−→ (ω	
BunG

)⊗n for some n �= 0,

so the sheaf of differential operators acting on λL is D′. Therefore according
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to 1.2.5 the action of g̃ ⊗ Kx on λL,x induces a canonical morphism

hx : zx → Γ(BunG, D′) .

Clearly hx does not depend on L ∈ Ztorsθ(X).

4.4.13. In this subsection we prove that the hx from 4.4.12 coincides with

the hx from 2.5.4. The reader can skip this proof and simply forget the old

definition of hx (it was introduced only to avoid the discussion of square

roots of ωBunG
in Section 2).

To prove that the two definitions of hx are equivalent it suffices to show

that if L is a square root of ωX then the isomorphism λ⊗2
L

∼−→ ω	
BunG

induces

a g̃ ⊗ Kx-equivariant isomorphism between their pullbacks to BunG,x. This

can be proved directly, but in fact it cannot be otherwise. Indeed, the

obstruction to g̃ ⊗ Kx-equivariance is a 1-cocycle g̃ ⊗ Kx → H0(BunG,x,O).

Since Hom(g̃ ⊗ Kx, C) = 0 it is enough to show that every regular function f

on BunG,x is locally constant. According to 2.3.1 BunG,x is the inverse limit

of BunG,nx, n ∈ N. Clearly f comes from a regular function on BunG,nx for

some n. So it suffices to prove the following lemma.

Lemma. Every regular function on BunG,nx is locally constant.

Proof. Choose y ∈ X\{x} and consider the scheme M parametrizing G-

bundles on X trivialized over nx and the formal neighbourhood of y (here

the divisor nx is considered as a subscheme). G(Ky) acts on M and a regular

function f on BunG,nx is a G(Oy)-invariant element of H0(M,OM ). Clearly

H0(M,OM ) is an integrable discrete g ⊗ Ky-module. It is well known and

very easy to prove that a (g ⊗ Oy)-invariant element of such a module is

(g ⊗ Ky)-invariant. So f is (g ⊗ Ky)-invariant. Since the action of g ⊗ Ky

on M is (formally) transitive f is locally constant.

Remark. The above lemma is well known. A standard way to prove it

would be to represent BunG,nx as Γ\G(Ky)/G(Oy) for some Γ ⊂ G(Ky) (see
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[La-So] for the case n = 0) and then to use the fact that a regular function

on G(Ky)/G(Oy) is locally constant.

4.4.14. Now we will finish the proof of the horizontality theorem 2.7.3 (see

2.8.3 – 2.8.5 for the beginning of the proof).

Let M be the scheme over X whose fiber over x ∈ X is BunG,x. Fix

L ∈ ω1/2(X) and Lloc ∈ ω1/2(O) (i.e., L is a square root of ωX , Lloc is a

square root of ωO). Then one has the scheme X∧
2 defined in 4.3.16. Denote

by M∧
2 the fiber product of M and X∧

2 over X. The semidirect product

Aut2 O � G(K) acts on M∧
2 (cf. 4.3.16).

One has its central extension Aut2 O � G̃(K) where G̃(K) is the central

extension (212) corresponding to Lloc and Aut2 O = Aut(O,Lloc) acts on

G̃(K) = G̃(K)Lloc by transport of structure. Denote by λ∧
L the pullback to

M∧
2 of the Pfaffian line bundle λ′

L from 4.4.1. Since Aut2 O acts on M∧
2

as on a scheme over BunG one gets the action of Aut2 O on λ∧
L. On the

other hand, G̃(K) acts on λ∧
L,x̂ :=the restriction of λ∧

L to the fiber of M∧
2

over x̂ ∈ X∧
2 . Indeed, this fiber equals BunG,x where x is the image of

x̂ in X, and by 4.4.8 the central extension G̃(Kx)L acts on λ′
L,x = λ∧

L,x̂.

This extension depends only on Lx :=the pullback of L to SpecOx. Since

x̂ defines an isomorphism (Ox,Lx) ∼−→ (O,Lloc) we get an isomorphism

G̃(Kx)L
∼−→ G̃(K) and therefore an action of G̃(K) on λ∧

L,x̂. As explained

in 2.8.5, to finish the proof of 2.7.3 it suffices to show that

i) the action of G̃(K) on λ∧
L,x̂ corresponding to various x̂ ∈ X∧

2 come from

an (obviously unique) action of G̃(K) on λ∧
L,

ii) this action is compatible with that of Aut2 O (i.e., we have, in fact, an

action of Aut2 O � G̃(K) on λ∧
L).

This follows immediately from 4.3.17.

4.4.15. In this subsection and the following one we formulate and prove a

generalization of statements i) and ii) from 4.4.14, which will be used in the

proof of the main result of this work (Theorem 5.4.5). The generalization
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is obvious (ω1/2(X) is replaced by Z torsθ(X), etc.), and the reader can

certainly skip these subsections for the moment.

Fix L ∈ Z torsθ(X) and Lloc ∈ Z torsθ(O). Denote by X∧
Z the

etale Z-covering of X∧ such that the preimage in X∧
Z(R) of a point of

X∧(R) corresponding to a morphism α : Spec(R⊗̂O) → X is the set of

isomorphisms Lloc
R

∼−→ α∗L in the groupoid∗) Z torsθ(R⊗̂O), where Lloc
R

is the pullback of Lloc to SpecR⊗̂O. The group ind-scheme AutZ O =

Aut(O,Lloc) from 4.6.6 acts on X∧
Z by transport of structure. Denote by M∧

Z

the fiber product of M and X∧
Z over X. Let λ∧

L denote the pullback to M∧
Z of

the line bundle λL defined in 4.4.3. The semidirect product AutZ O �G(K)

acts on M∧
Z . One has its central extension AutZ O � G̃(K), where G̃(K) is

the central extension (217) corresponding to Lloc and AutZ O = Aut(O,Lloc)

acts on G̃(K) = G̃(K)Lloc by transport of structure. Let us lift the action

of AutZ O � G(K) on M∧
Z to an action of AutZ O � G̃(K) on λ∧

L.

Just as in 4.4.14 one defines the action of AutZ O on λ∧
L and the action

of G̃(K) on λ∧
L,x̂ :=the restriction of λ∧

L to the fiber of M∧
Z over x̂ ∈ X̂Z .

4.4.16. Proposition.

(i) The actions of G̃(K) on λ∧
L,x̂ corresponding to various x̂ ∈ X∧

Z come

from an (obviously unique) action of G̃(K) on λ∧
L.

(ii) The actions of AutZ O and G̃(K) on λ∧
L define an action of AutZ O �

G̃(K).

Proof. Represent L ∈ Z torsθ(X) as L = E · L0, E ∈ Z tors(X), L0 ∈
ω1/2(X). By definition, λL = lE ⊗ λ′

L0
(see 4.1.4 or 4.1.6 for the definition

of the µ∞-torsor lE on BunG).

Consider Lloc as an object of ω1/2(O) (this is possible because both

Z torsθ(O) and ω1/2(O) have one and only one isomorphism class of objects).

Using L0 and Lloc construct X∧
2 , M∧

2 , and λ∧
L0

(see 4.4.14).

∗)Here it is convenient to use the definition Z torsθ from 3.4.5
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Consider E as a Z-covering E → X. Set X∧
E := E×XX∧, M∧

E := E×XM∧,

where X∧ and M∧ have the same meaning as in 2.6.5 and 2.8.3. Denote by

l∧E the pullback of lE to M∧
E .

Set M∧
E,2 := E ×X M∧

2 . One has the etale coverings M∧
E,2 → M∧

2 ,

M∧
E,2 → M∧

E , and p : M∧
E,2 → M∧

Z . Clearly p∗λ∧
L is the tensor product

of the pullbacks of l∧E and λ∧
L0

to M∧
E,2. Now consider l∧E and λ∧

L0
separately.

The semidirect product AutO � G(K) acts on M∧
E , and the action of

AutO on M∧
E lifts canonically to its action on l∧E (cf. 4.4.14 or 2.8.5). G(K)

acts on the restriction of l∧E to the fiber over each point of X∧
E (see 4.1.7). It

is easy to see that these actions come from an action of Aut O�G(K) on l∧E .

On the other hand, by 4.4.14 we have a canonical action of Aut2 O � G̃(K)

on λ∧
L0

.

So we get an action of Aut2 O � G̃(K) on p∗λ∧
L, which is compatible with

the action of Aut2 O on λ∧
L and with the action of G̃(K) on λ∧

L,x̂, x̂ ∈ X∧
Z .

Since p is etale and surjective the action of Aut2 O�G̃(K) on p∗λ∧
L descends

to an action of Aut2 O � G̃(K) on λ∧
L. Since AutZ O is generated by Aut2 O

and Z it remains to show that the action of Z ⊂ AutZ O on λ∧
L is compatible

with that of G̃(K). This is clear because the actions of Z and G̃(K) on λ∧
L,x̂

are compatible for every x̂ ∈ X∧
Z .

4.5. The affine Grassmannian. The affine Grassmannian GR is the fpqc

quotient G(K)/G(O) where O = C[[t]], K = C((t)). In this section we recall

some basic properties of GR. In 4.6 we construct and investigate the local

Pfaffian bundle; this is a line bundle on GR.

The affine Grassmannian will play an essential role in the proof of our

main theorem 5.2.6. However the reader can skip this section for the

moment.

In 4.5.1 – ? G denotes an arbitrary connected affine algebraic

group. Connectedness is a harmless assumption because G(K)/G(O) =

G0(K)/G0(O) where G0 is the connected component of G.
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4.5.1. Theorem.

(i) The fpqc quotient G(K)/G(O) is an ind-scheme of ind-finite type.

(ii) G(K)/G(O) is formally smooth.∗)

(iii) The projection p : G(K) → G(K)/G(O) admits a section locally for

the Zariski topology.

(iv) G(K)/G(O) is ind-proper if and only if G is reductive.

(v) G(K), or equivalently G(K)/G(O), is reduced if and only if Hom(G, Gm) =

0.

Remark. The theorem is well known. The essential part of the proof

given below consists of references to works by Faltings, Beauville, Laszlo,

and Sorger.

Proof. (i) and (iv) hold for G = GLn. Indeed, there is an ind-proper ind-

scheme Gr(Kn) parametrizing c-lattices in Kn (see 7.11.2(iii) for details).

GLn(K)/GLn(O) is identified with the closed sub-ind-scheme of Gr(Kn)

parametrizing O-invariant c-lattices. To prove (i) and (iv) for any G we

need the following lemma.

Lemma. Let G1 ⊂ G2 be affine algebraic groups such that the quotient

U := G1 \G2 is quasiaffine, i.e., U is an open subscheme of an affine scheme

Z. Suppose that the fpqc quotient G2(K)/G2(O) is an ind-scheme of ind-

finite type. Then this also holds for G1(K)/G1(O) and the morphism

G1(K)/G1(O) → G2(K)/G2(O)(221)

is a locally closed embedding. If U is affine then (221) is a closed embedding.

The reader can easily prove the lemma using the global interpretation of

G(K)/G(O) from 4.5.2. We prefer to give a local proof.

Proof. Consider the morphism f : G1(K) → Z(K). Clearly Z(O) is a

closed subscheme of Z(K), and U(O) is an open subscheme of Z(O). So

Y := f−1(U(O)) is a locally closed sub-ind-scheme of G2(K); it is closed if

∗)The definition of formal smoothness can be found in 7.11.1.
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U is affine. Clearly Y · G2(O) = Y , so Y is the preimage of a locally closed

sub-ind-scheme Y ′ ⊂ G2(K)/G2(O); if U is affine then Y ′ is closed. Since

G1(K) ⊂ Y we have a natural morphism

G1(K) → Y ′ .(222)

We claim that (222) is a G1(O)-torsor (G1(O) acts on G1(K) by right

translations) and therefore G1(K)/G1(O) = Y ′. To see that (222) is a

G1(O)-torsor notice that the morphism Y → Y ′ is a G2(O)-torsor, the

morphism ϕ : Y → U(O) = G1(O) \ G2(O) is G2(O)-equivariant, and

G1(K) = ϕ−1(e) where e ∈ G1(O) \ G2(O) is the image of e ∈ G2(O).

Let us prove (i) and (iv) for any G. Choose an embedding G ↪→ GLn. If

G is reductive then GLn/G is affine, so the lemma shows that G(K)/G(O)

is an ind-proper ind-scheme. For any G we will construct an embedding

i : G ↪→ G′ := GLn × Gm such that G′/i(G) is quasiaffine; this will imply

(i). To construct i take a GLn-module V such that G ⊂ GLn is the stabilizer

of some 1-dimensional subspace l ⊂ V . The action of G in l is defined by

some χ : G → Gm. Define i : G ↪→ G′ := GLn × Gm by i(g) = (g, χ(g)−1).

To show that G′/i(G) is quasiaffine consider V as a G′-module (λ ∈ Gm acts

as multiplication by λ) and notice that the stabilizer of a nonzero v ∈ l in

G′ equals i(G). So G′/i(G) � G′v and G′v is quasiaffine.

Let us finish the proof of (iv). If G(K)/G(O) is ind-proper and G′ is

a normal subgroup of G then according to the lemma G′(K)/G′(O) is also

ind-proper. Clearly Ga(K)/Ga(O) is not ind-proper. Therefore G(K)/G(O)

is ind-proper only if G is reductive.

To prove (iii) it suffices to show that p : G(K) → G(K)/G(O) admits a

section over a neighbourhood of any C-point x ∈ G(K)/G(O) (here we use

that C-points are dense in G(K)/G(O) by virtue of (i)). Since p is G(K)-

equivariant we are reduced to the case where x is the image of e ∈ G(K).

So one has to construct a sub-ind-scheme Γ ⊂ G(K) containing e such that
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the morphism

Γ × G(O) → G(K) , (γ, g) �→ γg(223)

is an open immersion. According to Faltings [Fal94, p.350–351] the

morphism (223) is an open immersion if the set of R-point of Γ is defined

by

Γ(R) = Ker(G(R[t−1])
f−→G(R)) ⊂ G(R((t))) = G(R⊗̂K)

where f is evaluation at t = ∞. The proof of this statement is due to

Beauville and Laszlo (Proposition 1.11 from [BLa94]). It is based on the

global interpretation of G(K)/G(O) in terms of X = P1 (see 4.5.2) and on

the following property of G-bundles on P1: for a G-bundle F on S × P1 the

points s ∈ S such that the restriction of F to s × P1 is trivial form an open

subset of S (indeed, H1(P1,O ⊗ g) = 0, g := LieG).

Let us deduce∗) (ii) from (iii). Since G(K) is formally smooth it

follows from (iii) that each point of G(K)/G(O) has a formally smooth

neighbourhood. Since G(K)/G(O) is of ind-finite type this implies (ii).

It remains to consider (v). G(O) is reduced. So G(K) is reduced

if and only if G(K)/G(O) is reduced. Laszlo and Sorger prove that

if Hom(G, Gm) = 0 then G(K)/G(O) is reduced (see the proof of

Proposition 4.6 from [La-So]); their proof is based on a theorem of

Shafarevich. If Hom(G, Gm) �= 0 there exist morphisms f : Gm → G

and χ : G → Gm such that χf = ϕn, n �= 0, where ϕn(λ) := λn. The

image of the morphism Gm(K) → Gm(K) induced by ϕn is not contained

in Gm(K)red, so G(K) is not reduced.

4.5.2. Let X be a connected smooth projective curve over C, x ∈ X(C), Ox

the completed local ring of x, and Kx its field of fractions. Then according

to Beauville – Laszlo (see 2.3.4) the fpqc quotient G(Kx)/G(Ox) can be

∗)In fact, one can prove (ii) without using (iii).
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interpreted as the moduli space of pairs (F , γ) consisting of a principal G-

bundle F on X and its section (=trivialization) γ : X \ {x} → F : to (F , γ)

one assigns the image of γ/γx in G(Kx)/G(Ox) where γx is a section of F
over Spec Ox and γ/γx denotes the element g ∈ G(Kx) such that γ = gγx

(we have identified G(Kx)/G(Ox) with the moduli space of pairs (F , γ) at

the level of C-points; the readers can easily do it for R-points where R is

any C-algebra).

4.5.3. Let us recall the algebraic definition of the topological fundamental

group of G. Denote by πet
1 (G) the fundamental group of G in Grothendieck’s

sense. A character f : G → Gm induces a morphism πet
1 (G) → πet

1 (Gm) =

Ẑ(1) and therefore a morphism f∗ : (πet
1 (G))(−1) → Ẑ. Denote by π1(G)

the set of α ∈ (πet
1 (G))(−1) such that f∗(α) ∈ Z for all f ∈ Hom(G, Gm).

We consider π1(G) as a discrete group. In fact, π1(G) does not change if G

is replaced by its maximal reductive quotient. For reductive G one identifies

π1(G) with the quotient of the group of coweights of G modulo the coroot

lattice.

For any finite covering p : G̃ → G one has the coboundary map G(K) →
H1(K, A) = A(−1), A := Ker p. These maps yield a homomorphism

G(K) → (πet
1 (G))(−1). Its image is contained in π1(G). So we have

constructed a canonical homomorphism

ϕ : G(K) → π1(G)(224)

where G(K) is understood in the naive sense (i.e., as the group of K-points

of G or as the group of C-points of the ind-scheme G(K)). The restriction

of (224) to G(O) is trivial, so (224) induces a map

G(K)/G(O) → π1(G)(225)

where G(K)/G(O) is also understood in the naive sense.

Now consider G(K) and G(K)/G(O) as ind-schemes. The set of C-points

of G(K)/G(O) is dense in G(K)/G(O), and the same is true for G(K).
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4.5.4. Proposition.

(i) The maps (224) and (225) are locally constant.

(ii) The corresponding maps

π0(G(K)) → π1(G)(226)

π0(G(K)/G(O)) → π1(G)(227)

are bijective.

Proof. We already proved (i) using a global argument (see the Remark

at the end of 4.1.7). The same argument can be reformulated using the

interpretation of G(Kx)/G(Ox) from 4.5.2: the map (225) equals minus the

composition of the natural map G(Kx)/G(Ox) → BunG and the “first Chern

class” map c : π0(BunG) → π1(G). For a local proof of (i) see 4.5.5.

Now let us prove (ii). The map π0(G(K)) → π0(G(K)/G(O)) is bijective

(because G is connected). So it suffices to consider (226). Since G can be

represented as a semi-direct product of a reductive group and a unipotent

group we can assume that G is reductive. Fix a Cartan subgroup H ⊂ G. We

have π0(H(K)) = π1(H) and the composition π0(H(K)) → π0(G(K)) →
π1(G) is the natural map π1(H) → π1(G), which is surjective. So (226)

is also surjective. The map π0(H(K)) → π0(G(K)) is surjective (use the

Bruhat decomposition for the abstract group G(K)). Therefore to prove the

injectivity of (226) it suffices to show that the kernel of the natural morphism

f : π0(H(K)) → π1(G) is contained in the kernel of π0(H(K)) → π0(G(K)).

Since Ker f is the coroot lattice it is enough to prove that for any coroot

γ : Gm → H the image of Gm(K) in G(K) belongs to the connected

component of e ∈ G(K). A coroot Gm → H extends to a morphism

SL(2) → G, so it suffices to notice that SL(2, K) is connected (because

any matrix from SL(2, K) can be represented as a product of unipotent

matrices).

In the next subsection we give a local proof of 4.5.4(i).
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4.5.5. Lemma. Let M = SpecR be a connected affine variety, A a finite

abelian group, α ∈ H1
et(Spec R((t)), A). For x ∈ M(C) denote by α(x)

the restriction of α to the fiber of SpecR((t)) → Spec R over x, so

α(x) ∈ H1
et(Spec C((t)), A) = A(−1). Then α(x) ∈ A(−1) does not depend

on x.

Proof. It suffices to show that for any smooth connected M ′ and any

morphism M ′ → M the pullback of α to M ′(C) is constant∗). So we can

assume that M is smooth. Set V := SpecR[[t]], V ′ := SpecR((t)). We can

assume that A = µn. Then α corresponds to a µn-torsor on V ′, i.e., a line

bundle A on V ′ equipped with an isomorphism ψ : A⊗n ∼−→ OV ′ . Since V is

regular A extends to a line bundle Ã on V . Then ψ induces an isomorphism

Ã⊗n ∼−→ tkOV for some k ∈ Z. Clearly α(x) ∈ Z/nZ is the image of k.

Here is a local proof of 4.5.4(i). Since G(K)/G(O) is of ind-finite type

it suffices to prove that for every connected affine variety M = SpecR and

any morphism f : M → G(K) the composition M(C) → G(K) → π1(G)

is constant. For any finite abelian group A an exact sequence 0 → A →
G̃ → G → 0 defines a map π1(G) → A(−1) and it is enough to show that

the composition M(C) → G(K) → π1(G) → A(−1) is constant. To prove

this apply the lemma to α = ϕ∗β where ϕ : SpecR((t)) → G corresponds

to f : Spec R → G(K) and β ∈ H1
et(G, A) is the class of G̃ considered as an

A-torsor on G.

Remark. In fact, one can prove that for every affine scheme M = Spec R

over C the “Künneth morphism”

H1
et(M, A) ⊕ H0(M, Z) ⊗ H1

et(Spec C((t)), A) → H1
et(M((t)), A),(228)

M((t)) := SpecR((t)),

is an isomorphism (clearly this implies the lemma). A similar statement

holds for any ring R such that the order of A is invertible in R.

∗)In fact, it is enough to consider only those M ′ that are smooth curves.
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4.5.6. Proposition. Let A ⊂ G be a finite central subgroup, G′ := G/A.

(i) The morphism G(K)/G(O) → G′(K)/G′(O) induces an isomorphism

between G(K)/G(O) and the union of some connected components of

G′(K)/G′(O).

(ii) The morphism G(K) → G′(K) is an etale covering.

Remark. By 4.5.4 the components mentioned in (i) are labeled by elements

of Im(π1(G) → π1(G′)). The same is true for the connected components of

the image of G(K) in G′(K).

Proof. Clearly (i) and (ii) are equivalent.

Let us prove (i) under the assumption of semisimplicity of G (which

is equivalent to semisimplicity of G′). In this case the morphism f :

G(K)/G(O) → G′(K)/G′(O) is ind-proper by 4.5.1(iv). By 4.5.4(i) the

fibers of f over geometric points∗) of components C ⊂ G′(K)/G′(O) such

that f−1(C) �= ∅ contain exactly one point, and it is easy to see that

these fibers are reduced. By 4.5.1(v) G′(K)/G′(O) is reduced. So in the

semisimple case (i) is clear.

Now let us reduce the proof of (ii) to the semisimple case. We can

assume that A is cyclic. It suffices to construct a morphism ρ from G

to a semisimple group G1 such that ρ|A is injective and ρ(A) ⊂ G1 is

central (then the morphism G(K) → G′(K) is obtained by base change from

G1(K) → G′
1(K), G′

1 := G1/ρ(A)). To construct G1 and ρ one can proceed

as follows. Fix an isomorphism χ : A
∼−→ µn. Let V be a finite-dimensional

G-module such that Z acts on V via χ. Denote by Wpq the direct sum of p

copies of V and q copies of Symn−1 V ∗. If p·dimV = q(n−1)·dim Symn−1 V

then one can set G1 := SL(Wpq) (indeed, the image of GL(V ) in GL(Wpq)

is contained in SL(Wpq).

Remarks
∗)The statement for C-points follows immediately from 4.5.4(i). Since 4.5.4 remains

valid if C is replaced by an algebraically closed field E ⊃ C the statement is true for

E-points as well.
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(i) Proposition 4.5.6 is an immediate consequence of the bijectivity of

(228).

(ii) It is easy to prove Proposition 4.5.6 using the global interpretation of

G(K)/G(O) from 4.5.2.

4.5.7. Suppose that G is reductive. Denote by Gad the quotient of G

by its center. Set T := G/[G, G], G′ := Gad × T . Then G′ = G/A

for some finite central subgroup A ⊂ G. So by 4.5.6 G(K)/G(O) can be

identified with the union of certain connected components of G′(K)/G′(O) =

Gad(K)/Gad(O) × T (K)/T (O).

The structure of T (K)/T (O) is rather simple. For instance, the reduced

part of Gm(K)/Gm(O) is the discrete space Z and the connected component

of 1 ∈ Gm(K)/Gm(O) is the formal group with Lie algebra K/O.

4.5.8. From now on we assume that G is reductive and set GR :=

G(K)/G(O).

Recall that G(O)-orbits in GR are labeled by dominant coweights of G or,

which is the same, by P+(LG) := the set of dominant weights of LG. More

precisely, χ ∈ P+(LG) defines a conjugacy class of morphisms ν : Gm → G

and, by definition, Orbχ is the G(O)-orbit of the image of ν(π) in GR where

π is a prime element of O (this image does not depend on the choice of π).

Clearly Orbχ does not depend on the choice of ν inside the conjugacy class,

so Orbχ is well-defined. According to [IM] the map χ �→ Orbχ is a bijection

between P+(LG) and the set of G(O)-orbits in GR. It is easy to show that

dim Orbχ = (χ, 2ρ)(229)

where 2ρ is the sum of positive roots of G.

Remark. Clearly Orbχ is Aut0 O-invariant.

4.5.9. We have the bijection (227) between π0(GR) and π1(G). Let Z

be the center of the Langlands dual group LG. We identify π1(G) with
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Z∨ := Hom(Z, Gm) using the duality between the Cartan tori of G and LG.

So the connected components of GR are labeled by elements of Z∨.

Remark. The connected component of GR containing Orbχ corresponds

to χZ ∈ Z∨ where χZ is the restriction of χ ∈ P+(LG) to Z.

4.5.10. There is a canonical morphism α : µ2 → Z. If G is semisimple we

have already defined it by (56). If G is reductive this gives us a morphism

µ2 → Z ′ where Z ′ is the center of the commutant of LG; then we define α

to be the composition µ2 → Z ′ ↪→ Z.

According to 4.4.4 the dual morphism α∨ : π1(G) → Z/2Z is the

morphism of fundamental groups that comes from the adjoint representation

G → SO(gss), gss := [g, g].

The composition of (227) and α∨ defines a locally constant parity function

p : GR → Z/2Z .(230)

We say that a connected component of GR is even (resp. odd) if (230) maps

it to 0 (resp. 1).

4.5.11. Proposition. All the G(O)-orbits of an even (resp. odd) component

of GR have even (resp. odd) dimension.

Proof. Let x = gG(O) ∈ GR. Using the relation between α∨ and the adjoint

representation (see 4.5.10) as well as Remarks (ii) and (iii) from 4.3.4 we see

that x belongs to an even component of GR if and only if

dim gss ⊗ O/
(
(gss ⊗ O) ∩ Adg(gss ⊗ O)

)
(231)

is even. But (231) is the dimension of the G(O)-orbit of x.

Here is another proof. Using (229) and the Remark from 4.5.9 we see

that the proposition is equivalent to the formula χZ(α(−1)) = (−1)〈χ,2ρ〉,

which is obvious because according to (56) α : µ2 → Z is the restriction of

the morphism λ# : Gm → H ⊂ G corresponding to 2ρ.
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4.5.12. The following properties of G(O)-orbits in GR will not be used in

this work but still we think they are worth mentioning.

The closure of Orbχ is the union of Orbχ′ , χ′ ≤ χ. Indeed, if ρ : G →
GL(V ) is a representation with lowest weight λ then for g ∈ Orbχ one has

ρ(g) ∈ t(χ,λ) End(V ⊗ O), ρ(g) /∈ t(χ,λ)+1 End(V ⊗ O). So if Orbχ′ ⊂ Orbχ

then (χ − χ′, λ) ≤ 0 for every antidominant weight λ of G and therefore

χ − χ′ is a linear combination of simple coroots of G with non-negative

coefficients; by 4.5.4(i) these coefficients are integer, so χ′ ≤ χ. On the

other hand, a GL(2) computation shows that the set of weights χ′ of LG

such that Orbχ′ ⊂ Orbχ is saturated in the sense of [Bour75], Ch. VIII, §7,

no. 2. So Proposition 5 from loc.cit shows that Orbχ′ ⊂ Orbχ for every

dominant χ′ such that χ′ ≤ χ.

The above description of Orbχ implies that Orbχ is closed if and only

if χ is minimal. If G is simple then χ is minimal if and only if χ = 0

or χ is a microweight of LG (see [Bour68], Ch. VI, §2, Exercise 5). So

on each connected component of GR there is exactly one closed G(O)-

orbit (use 4.5.4 and the first part of the exercise from loc.cit). If Orbχ is

closed it is projective, so in this case G(O) acts on Orbχ via G = G(O/tO)

and Orbχ is the quotient of G by a parabolic subgroup. In terms of 9.1.3

Orbχ = orbχ = G/P−
χ .

If G is simple then there is exactly one χ such that Orbχ \ Orbχ consists

of a single point∗); this χ is the coroot of g := LieG corresponding to the

maximal root αmax of g (see [Bour75], Ch. VIII, §7, Exercise 22). In this

case Orbχ can be described as follows. Set V := g ⊗ (m−1/O) where m is

the maximal ideal of O. Denote by V the projective space containing V

as an affine subspace. So V is the space of lines in V ⊕ C; in particular

V ∗ = g∗ ⊗ (m/m2) acts on V preserving 0 ∈ V . Denote by C the set of

elements of V that are G-conjugate to gαmax ⊗ (m−1/O). This is a closed

subvariety of V . Its projective closure C ⊂ V is V ∗-invariant because C is a

∗)Of course, this point is the image of e ∈ G(K).
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cone. It is easy to show that the morphism exp : C → G(K)/G(O) extends

to an isomorphism f : C
∼−→ Orbχ. Clearly f is Aut0 O-equivariant and

G-equivariant. The action of Ker(G(O) → G(O/m)) on C induced by its

action on Orbχ comes from the action of V ∗ on C and the isomorphism

Ker(G(O/m2) → G(O/m)) ∼−→ g ⊗ m/m2 ∼−→ V ∗

where the last arrow is induced by the invariant scalar product on g such

that (αmax, αmax) = 2.

4.6. Local Pfaffian bundles. Consider the affine Grassmannian GR :=

G(K)/G(O) where O = C[[t]], K = C((t)). Set Z := Hom(π1(G), Gm)

(by the Remark from 4.1.1 Z is the center of LG). In this subsection we

will construct and investigate a functor L �→ λL = λloc
L from the groupoid

Z torsθ(O) (see 3.4.3) to the category of line bundles on GR. We call λL the

local Pfaffian bundle corresponding to L.

We recommend the reader to skip this subsection for the moment.

4.6.1. In 4.4.9 we defined a functor L �→ G̃(K)L from Z torsθ(O) to the

category of central extensions of G(K) by Gm. For L ∈ Z torsθ(O) we have

the splitting G(O) → G̃(K)L and therefore the principal Gm-bundle

G̃(K)L/G(O) → G(K)/G(O) = GR .(232)

4.6.2. Definition. λL is inverse to the line bundle on GR corresponding to

the Gm-bundle (232).

Clearly λL depends functorially on L ∈ Z torsθ(O).

4.6.3. Remark. G̃(K)L depends on the choice of a non-degenerate invariant

bilinear form on g (see 4.4.7). So this is also true for λL.

4.6.4. Let e ∈ GR denote the image of the unit e ∈ G. Our λL is the

unique G̃(K)L-equivariant line bundle on GR trivialized over e such that

any c ∈ Gm ⊂ G̃(K)L acts on λL as multiplication by c−1. Uniqueness

follows from the equality Hom(G(O), Gm) = 0.
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4.6.5. By 4.4.11 the action of G̃(K)L on λL induces an action of g̃ ⊗ K on

λL such that 1 ∈ C ⊂ g̃ ⊗ K acts as multiplication by −1. It is compatible

with the action of g ⊗ K on GR by left infinitesimal translations.

4.6.6. The push-forward of (63) by the morphism (56) is an exact sequence

0 → Z → AutZO → AutO → 0 .(233)

For any L ∈ Z tors(O) the exact sequence

0 → Z → Aut(O,L) → AutO → 0(234)

can be canonically identified with (233). Here Aut(O,L) is the group ind-

scheme of pairs (σ, ϕ), σ ∈ AutO, ϕ : L ∼−→ σ∗L (the reader may prefer

to consider L as an object of the category Z̃ torsω(O) from 3.4.5). The

isomorphism between (233) and (234) is induced by the obvious morphism

Aut2 O := Aut(O, ω
1/2
O ) → Aut(O,L).

AutZ O = Aut(O,L) acts on the exact sequence (217) by transport

of structure; the action of AutZ O on Gm is trivial and its action on

G(K) comes from the usual action of AutO on G(K). The subgroup

G(O) ⊂ G̃(K)L is AutZ O-invariant.

4.6.7. It follows from 4.6.6 that the action of AutO on GR lifts canonically

to an action of AutZ O on the principal bundle (232) and the line bundle

λL. The action of AutZ O on λL induces an action of DerO = Lie AutZ O

on λL.

4.6.8. The action of Z = AutL on the extension (217) comes from (215).

So Z acts on λL via the morphism

Z → H0(GR,O∗
GR)(235)

inverse to the composition of (215) and the natural embedding Hom(G(K), Gm) ↪→
H0(GR,O∗

GR). Recall that π0(GR) = Z∨ (see 4.5.9), so z ∈ Z defines

fz : π0(GR) → C∗ and (235) is the map z �→ f−1
z .
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4.6.9. Remark. (Do we need it ???). Consider the category of line bundles

on GR as a Z-category in the sense of 3.4.4, the Z-structure being defined

by (235). By 3.4.7 (i) we have a canonical Picard functor

Z tors(O) = Z tors → {line bundles on GR} .(236)

Explicitly, (236) assigns to E ∈ Z tors the E-twist of OGR equipped with the

Z-action (235). By 3.4.7 (iv) the functor L �→ λL, L ∈ Z torsθ(O), is affine

with respect to the Picard functor (236).

4.6.10. The morphism α : µ2 → Z defined by (56) induces an action of

µ2 on λL, L ∈ Z torsθ(O). It defines a (Z/2Z)-grading on λL. In 4.5.10 we

introduced the notions of even and odd component of GR. According to

4.6.8 the restriction of the (Z/2Z)-graded bundle λL to an even (resp. odd)

component of GR is even (resp. odd).

4.6.11. The functor

Z torsθ(O) → {line bundles on GR}, L �→ λL(237)

is a Z-functor in the sense of 3.4.4 provided the Z-structure on the r.h.s. of

(237) is defined by (235). Since Z torsθ(O) is equivalent to ω1/2(O) ⊗µ2 Z

(see 3.4.4) the functor (237) is reconstructed from the corresponding functor

ω1/2(O) → {line bundles onGR}(238)

where ω1/2(O) is the groupoid of square roots of ω(O). Since the extension

(212) essentially comes from the “Clifford extension” (193) it is easy to give

a Cliffordian description of (238). Here is the answer.

Let L ∈ ω1/2(O). We have fixed a nondegenerate invariant symmetric

bilinear form on g, so the Tate space V = VL := L ⊗O (g ⊗ K) carries a

nondegenerate symmetric bilinear form (see 4.3.3) and L := L ⊗ g ⊂ V is a

Lagrangian c-lattice. Set M = ML := Cl(V )/ Cl(V )L; this is an irreducible

(Z/2Z)-graded discrete module over Cl(V ). We have the line bundle PM on
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the ind-scheme Lagr(V ) of Lagrangian c-lattices in V (see 4.3.2). We claim

that

λL = ϕ∗PML(239)

where the morphism∗) ϕ : G(K)/G(O) → Lagr(V ) is defined by ϕ(g) :=

gLg−1; in other words

the fiber of λL over g ∈ G(K)/G(O) is MgLg−1
:=

{m ∈ ML|(gLg−1) · m = 0}.
(240)

Indeed, the central extension (212) is opposite to the one induced from (193)

and therefore the action of Õ(V ) on PML (see 4.3.2) induces an action of

G̃(K)L on ϕ∗PML such that c ∈ Gm ⊂ G̃(K)L acts as multiplication by c−1;

besides, the fiber of ϕ∗PML over e is C.

Clearly the isomorphism (239) is functorial in L ∈ ω1/2(O).

4.6.12. Remarks

(i) The line bundle PM from 4.3.2 is (Z/2Z)-graded. So both sides of (239)

are (Z/2Z)-graded. The gradings of both sides of (239) are induced by

the action of µ2 = AutL (to prove this for the r.h.s. notice that the

(Z/2Z)-grading on Cl(V ) is induced by the natural action of µ2 on V ).

Therefore (239) is a graded isomorphism.

(ii) According to 4.6.10 −1 ∈ µ2 = AutL acts on the r.h.s. of (239) as

multiplication by (−1)p where p is the parity function (230). This also

follows from the equality χ = θ (see the proof of Lemma 4.3.4) and

Remark (ii) at the end of 4.3.4.

4.6.13. We should think about super-aspects, in particular: what is the

inverse of a 1-dimensional superspace? (maybe this should be formulated in

an arbitrary Picard category; there may be troubles if it is not STRICTLY

commutative).

∗)It is easy to show that ϕ is a closed embedding and its image is the ind-scheme of

Λ ∈ Lagr(V ) such that OΛ = Λ and L−1 ⊗O Λ is a Lie subalgebra of g ⊗ K.
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Consider a G(O)-orbit Orbχ ⊂ GR, χ ∈ P+(LG) (see 4.5.8). We will

compute λL,χ := the restriction of λL to Orbχ, L ∈ Z torsθ(O). By 4.6.4 λL,χ

is G(O)-equivariant. The orbit Orbχ is Aut0 O-invariant and by 4.6.7 λL,χ

is Aut0Z O-equivariant where Aut0Z O is the preimage of Aut0 O in AutZ O

(see (233)). Finally λL,χ is Z/2Z-graded (but in fact λL,χ is even or odd

depending on χ; besides, the Z/2Z-grading can be reconstructed from the

action of Z ⊂ Aut0Z O.....). The groups G(O) and Aut0Z O also act on the

canonical sheaf ωOrbχ (Aut0Z O acts via Aut0 O). In 4.6.17-4.6.19 (???) we

will construct a canonical isomorphism

λL,χ
∼−→ ωOrbχ ⊗ (dL,χ)−1(241)

for a certain 1-dimensional vector space dL,χ. This space is equipped with

an action of G(O) and Aut0Z O and (241) is equivariant with respect to these

groups.

4.6.14. Let us define dL,χ. Of course the action of G(O) on dL,χ is defined

to be trivial (G(O) has no nontrivial characters). So we have to construct

for each χ a functor

Z torsθ(O) → {Aut0Z O-mod}, L �→ dL,χ(242)

where {Aut0Z O-mod} denotes the category of Aut0Z O-modules. First let us

define a functor

ω1/2(O) → {Aut0Z O-mod}, L �→ dL,χ(243)

For L ∈ ω1/2(O) set

dL,χ := (L0)⊗d(χ)(244)

where L0 is the fiber of L over the closed point 0 ∈ Spec O and

d(χ) := (χ, 2ρ) = dim Orbχ(245)
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Define the representation of Aut0Z O in dL,χ as follows: Aut02 O = Aut0(O,L)

acts in the obvious way and Z ⊂ Aut0Z O acts via

χZ : Z → Gm(246)

where χZ is the restriction of χ ∈ P+(LG) to Z ⊂ LG (these two actions

are compatible because the composition of χZ and the morphism (56) maps

−1 ∈ µ2 to (−1)(χ,2ρ)).

So we have constructed (243). ω1/2(O) is a µ2-category in the sense of

3.4.4, {Aut0Z O-mod} is a Z-category, and (243) is a µ2-functor (the µ2-

structure on {Aut0Z O} comes from the morphism (56) or, equivalently, from

the canonical embedding µ2 → Aut02 O). So (243) induces a Z-functor

Z torsθ(O) = ω1/2(O) ⊗µ2 Z →{Aut0Z O-mod}. This is the definition of

(242).

4.6.15. Clearly Lie Aut0Z O = Der0 O acts on the one-dimensional space

dL,χ as follows:

L0 �→ (χ, ρ) = −1
2

dim Orbχ , Ln �→ 0 for n > 0(247)

As usual, Ln := −tn+1 d
dt ∈ Der0 O.

4.6.16. Remark. The definition of dL,χ from 4.6.14 can be reformulated as

follows. Using the equivalence Z torsθ(O) ∼−→ Z̃ torsω(O) from 3.4.5 we

interpret L ∈ Z torsθ(O) in terms of (59) as a lifting of the Gm-torsor

ωO to a Z̃-torsor. We have the canonical morphism Z̃ → LH from (62)

where LH is the Cartan torus of LG or, which is the same, LH is a Cartan

subgroup of LG with a fixed Borel subgroup containing it. Denote by χZ̃

the composition of Z̃ → LH and χ : LH → Gm. The Z̃-torsor L on SpecO

and the 1-dimensional representation χZ̃ : Z̃ → Gm define a line bundle dO
L,χ

on SpecO. According to 4.6.6 AutZ O = Aut(O,L), so the action of AutO

on SpecO lifts to a canonical action of AutZ O on dO
L,χ. Therefore Aut0Z O

acts on the fiber of dO
L,χ at 0 ∈ Spec O. The reader can easily identify this

fiber with the dL,χ from 4.6.14.
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4.6.17. Let us construct the isomorphism (241) for L ∈ ω1/2(O). We use

the Cliffordian description of λL. Just as in 4.6.11 we set V = VL :=

L ⊗O (g ⊗ K), L := L ⊗ g ⊂ V , M = ML := Cl(V )/ Cl(V )L. For

x ∈ GR = G(K)/G(O) set Lx := gLg−1 where g is a preimage of x in

G(K). By (240) the fiber of λL at x equals

MLx := {m ∈ ML|Lx · m = 0}(248)

Suppose that x ∈ Orbχ. Since Orbχ is the G(O)-orbit of x the tangent space

to Orbχ at x is (g ⊗ O)/((g ⊗ O) ∩ g(g ⊗ O)g−1) = L−1 ⊗O (L/(L ∩ Lx))

where g ∈ G(K) is a preimage of x. So the fiber of ω−1
Orbχ

at x equals

(L0)⊗−d(χ) ⊗ det(L/(L ∩ Lx)) where d(χ) = dim Orbχ. Taking (244) into

account we see that the fiber of the r.h.s. of (241) at x equals

(det(L/(L ∩ Lx)))−1(249)

So it remains to construct an isomorphism

det(L/(L ∩ Lx)) ⊗ MLx ∼−→ C(250)

4.6.18. Lemma. Consider a Tate space V equipped with a nondegenerate

symmetric bilinear form. Let L,Λ ⊂ V be Lagrangian c-lattices and M an

irreducible discrete module over the Clifford algebra Cl(V ). Consider the

operator

∧dL ⊗ M → M(251)

induced by the natural map
∧d L →

∧d V → Cl(V ). If d = dimL/(L ∩ Λ)

then (251) induces an isomorphism

∧d(L/(L ∩ Λ)) ⊗ MΛ ∼−→ ML(252)

The proof is reduced to the case where dim V < ∞ and V = L ⊕ Λ.
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4.6.19. We define (250) to be the isomorphism (252) for Λ = Lx (in the

situation of 4.6.17 ML = C). So for L ∈ ω1/2(O) we have constructed

the isomorphism (241), which is equivariant with respect to G(O) and

Aut02 O = Aut0(O,L).

Denote by Cχ the category of line bundles on Orbχ. Both sides of (241)

are µ2-functors ω1/2(O) → Cχ extended to Z-functors

Z torsθ(O) = ω1/2(O) ⊗µ2 Z → Cχ

(the Z-structure on Cχ is defined by the character of Z inverse to (246));

for the l.h.s of (241) this follows from 4.6.8. Clearly (241) is an isomorphism

of functors ω1/2(O) → Cχ. Therefore (241) is an isomorphism of functors

Z torsθ(O) → Cχ. The isomorphism (241) is Aut0Z O-equivariant because it

is Aut02 O-equivariant and Z-equivariant.

4.6.20. Recall that λL depends on the choice of a nondegenerate invariant

bilinear form on g (see 4.6.3 and 4.4.7). As explained in the footnote to 4.4.7

there is a more canonical version of λL. In the case where G is simple this

version λcan
L depends on the choice of β1/2 where β is the line of invariant

bilinear forms on g (cf. 4.4.5); λcan
L comes from the version of (212) obtained

by using SO(g ⊗ β1/2) instead of SO(g). It is easy to see that the (Z/2Z)-

grading on λcan
L , corresponding to the action of −1 ∈ Autβ1/2 coincides with

the grading from 4.6.10. The “canonical” version of (241) is an isomorphism

λcan
L,χ

∼−→ ωOrbχ ⊗ (dL,χ)−1 ⊗ (β1/2)⊗−d(χ)(253)

where d(χ) is defined by (245). Details are left to the reader.
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5. Hecke eigen-D-modules

5.1. Construction of D-modules.

5.1.1. In this subsection we construct a family of D-modules on BunG

parametrized by OpLG(X), i.e., the stack of LG-opers on X.

Denote by Z the center of LG. According to formula (57) from 3.4.3

we must associate to L ∈ Z torsθ(X) a family of D-modules on BunG

parametrized by OpLg(X). In 4.4.3 we defined λL ∈ µ∞ torsθ(BunG). λL is

a line bundle on BunG equipped with an isomorphism λ⊗2n
L

∼−→ (ω	
BunG

)⊗n

for some n �= 0 (see 4.0.1). So λL is a D′-module. Therefore ML :=

λ−1
L

⊗
OBunG

D′ is a left D-module on BunG. According to 3.3.2 and 2.7.4

there is a canonical morphism of algebras hXϕX : ALg(X) → Γ(BunG, D′).

So the right action of Γ(BunG, D′) on D′ yields an ALg(X)-module structure

on ML. Therefore we may consider ML as a family of left D-modules on

BunG parametrized by SpecALg(X) = OpLg(X).

So we have constructed a family of left D-modules on BunG parametrized

by OpLG(X). For an LG-oper F the corresponding D-module MF is

ML/mFML = λ−1
L ⊗ D′/D′mF where L is the image of F in Z torsθ(X)

and mF ⊂ ALg(X) is the maximal ideal of the Lg-oper corresponding to F.

5.1.2. Proposition.

(i) For every L ∈ Z torsθ(X) ML is flat over ALg(X).

(ii) For every LG-oper F the D-module MF is holonomic. Its singular

support coincides as a cycle with the zero fiber of Hitchin’s fibration.

Proof. According to 2.2.4 (iii) grD′ is flat∗) over grALg(X). So D′ is flat over

ALg(X). This implies i) and the equality gr(D′/D′I) = grD′/(grD′ · gr I)

for any ideal I ⊂ ALg(X). If I is maximal we obtain ii).

∗)This means that if f : S → BunG is smooth and S is affine Γ(S, f∗ grD′) is a free

module over gr ALg(X) (a flat Z+-graded module over a Z+-graded ring A with A0 = C

is free).
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5.2. Main theorems I: an introduction.

5.2.1. Our main global theorem 5.2.6 asserts that the D-module MF is an

eigenmodule of the Hecke functors. In order to define them we introduce

the big Hecke stack Hecke. The groupoid of S-points Hecke(S) consists of

quadruples (F1,F2, x, α) where F1, F2 are G-torsors on X × S, x ∈ X(S),

and α : F1|U ∼−→ F2|U is an isomorphism over the complement U to the

graph of x. One has the obvious projection p1,2,X = (p1, p2, pX) : Hecke →
BunG × BunG × X.

The stack Hecke is ind-algebraic and the projections pi, pi,X are ind-

proper. Precisely, there is an increasing family of closed algebraic substacks

Hecke1 ⊂ Hecke2 ⊂ · · · ⊂ Hecke such that Hecke =
⋃

Heckea and

pi : Heckea → BunG, pi,X : Heckea → BunG × X are proper morphisms.

5.2.2. Remarks. (i) The composition of α’s makes Hecke an X-family of

groupoids on BunG.

(ii) Hecke is a family of twisted affine Grassmannians over BunG × X.

Precisely, for (F2, x) ∈ BunG × X the fiber Hecke(F2,x) := p−1
2,X(F2, x) is

canonically isomorphic to the affine Grassmannian GRx := G(Kx)/G(Ox)

twisted by the G(Ox)-torsor F2(Ox) (with respect to the left G(Ox)-action).

In the case where F2 is the trivial bundle we described this isomorphism in

4.5.2. In the general case the construction is similar: for fixed γ2 ∈ F2(Ox)

we assign to (F1,F2, x, α) the image of γ2/α(γ1) in G(Kx)/G(Ox) where γ1

is any element of F1(Ox) and γ2/α(γ1) denotes the element g ∈ G(Kx) such

that gα(γ1) = γ2; by 2.3.4 the morphism Hecke(F2,x) → G(Kx)/G(Ox) is an

isomorphism.

5.2.3. The set of conjugacy classes of morphisms ν : Gm → G can be

canonically identified with the set P+(LG) of dominant weights of LG. Recall

that G(Ox)-orbits in GRx = G(Kx)/G(Ox) are labeled by χ ∈ P+(LG); by

definition, Orbχ is the orbit of the image of ν(tx) ∈ G(Kx) in GRx where

ν : Gm → G is of class χ and tx ∈ Ox is a uniformizer.
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According to 5.2.2 (ii) the stratification of GRx by Orbχ yields a

stratification of the stack Hecke by substacks Heckeχ, χ ∈ P+(LG). The C-

points of Heckeχ are quadruples (F1,F2, x, α) such that for some γi ∈ Fi(Ox)

and a formal parameter tx at x one has γ2 = ν(tx)α(γ1) where ν : Gm → G

is of class χ. The involution (F1,F2, x, α) �→ (F2,F1, x, α−1) identifies

Heckeχ with Heckeχ◦ where χ◦ is the dual weight. So the fibers of

p2,X : Heckeχ → BunG × X are twisted forms of Orbχ while the fibers

of p1,X : Heckeχ → BunG × X are twisted forms of Orbχ◦ .

For every χ the stack Heckeχ is smooth over BunG × X. Usually its

closure Heckeχ is not smooth.

Remarks. (i) According to 4.5.12 Heckeχ is the union of the strata

Heckeχ′ , χ′ ≤ χ.

(ii) If G = GL(n) then our labeling of strata coincides with the “natural”

one. Namely, let V1, V2 be the vector bundles corresponding to F1,F2. Then

Heckeχ consists of all collections (V1, V2, x, α) such that for certain bases of

Vi’s on the formal neighbourhood of x the matrix of α equals tχx .

5.2.4. Let us define the Hecke functors T i
χ : M(BunG) → M(BunG × X)

where M denotes the category of D-modules, χ ∈ P+(LG), i ∈ Z.

For χ ∈ P+(LG), M ∈ M(BunG) denote by p�
1χM the minimal

(= Goresky–MacPherson) extension to Heckeχ of the pullback of M by the

smooth projection p1χ : Heckeχ → BunG, p1χ := p1|Heckeχ . Notice that the

fibration p1X : Heckeχ → BunG×X is locally trivial (see 5.2.2 (ii), 5.2.3), so

the choice of a local trivialization identifies p�
1χM (locally) with the external

tensor product of M and the “intersection cohomology” D-module on the

closure of the corresponding G(O)-orbit∗) on the affine Grassmannian.

Define the Hecke functors T i
χ : M(BunG) → M(BunG × X) by

T i
χ = H i(p2,X)∗p�

1χ(254)

∗)This orbit is Orbχ◦ where χ◦ is the dual weight, see 5.2.3.
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where H i(p2,X)∗ is the cohomological pushforward functor for the projection

p2,X : Heckeχ → BunG × X.

Remark. For a representable quasi-compact morphism f : X → Y of

algebraic stacks of locally finite type the definition of H if∗ : M(X ) → M(Y)

is clear. Indeed, in the case of schemes one has a definition of H if∗ and one

knows that H if∗ commutes with smooth base change.

5.2.5. For χ ∈ P+(LG) we denote by V χ the irreducible LG-module of

highest weight χ with marked highest vector. If F is an LG-oper on X (or,

more generally, an LG-bundle with a connection) denote by V χ
F

the F-twist

of V χ; this is a smooth D-module on X.

5.2.6. Main Global Theorem. Let F be an LG-oper on X and MF the D-

module on BunG defined in 5.1.1. Then T i
χMF = 0 for i �= 0 and there is a

canonical isomorphism of D-modules on BunG × X

T 0
χMF

∼−→ MF � V χ
F

.(255)

The isomorphisms (255) are compatible with composition of Hecke

correspondences and tensor products of V χ. For the precise statement see

5.4.3. All this means that MF is a Hecke eigen-D-module of eigenvalue F.

5.2.7. Laumon defined (see §§5.3 and 4.3.3 from [La87]) a conjectural

“Langlands transform” KE of an irreducible local system E on X (KE does

exist if rank E ≤ 2). KE is a holonomic D-module on BunGLn , n = rankE,

and at least for n = 2 its singular support is the zero fiber of Hitchin’s

fibration (see §5.5 from [La87]). Besides KE has regular singularities and

its restriction to each connected component of BunGLn is irreducible. If E

is an SLn local system then KE lives on BunPGLn .

Taking in account 5.1.2 and 5.2.6 it is natural to conjecture that for

G = PGLn the D-module MF from 5.1.1 equals KF (some results in this

direction can be found in [Fr]). It would also be interesting to find out (for
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any G) whether MF has regular singularities and whether its restrictions to

connected components of BunG are irreducible.

5.2.8. It is convenient and important to rewrite 5.2.6 in terms of the D-

modules ML from 5.1.1, L ∈ Z torsθ(X). According to (57) L ∈ Z torsθ(X)

defines a family FL of LG-opers on X parametrized by SpecALg(X). Thus

FL is an LG-torsor on X×Spec ALg(X) equipped with a connection along X.

For χ ∈ P+(LG) the FL-twist of V χ is a vector bundle on X × Spec ALg(X)

equipped with a connection along X. We consider it as a D-module V χ
L on

X equipped with an action of ALg(X).

Now consider the D-module ML on BunG (sec 5.1.1); ALg(X) acts on it.

It is easy to see (use 5.1.2 (i)) that 5.2.6 is a consequence of the following

theorem.

5.2.9. Theorem. There is a canonical isomorphism of D-modules on

BunG × X

T 0
χML →∼ML �

ALg
(X)

V χ
L(256)

compatible with the action of ALg(X), and T i
χML = 0 for i �= 0.

5.2.10. We will deduce the above global theorem from its local version

which we are going to explain now. Consider the affine Grassmannian

GR := G(K)/G(O) where O := C[[t]], K = C((t)). This is an ind-proper

ind-scheme. Thus we have the “abstract” category M(GR) of D-modules on

GR defined as lim
−→

M(Y ) where Y runs over the set of all closed subschemes

Y ⊂ GR.

We are not able to represent GR as a union of an increasing sequence of

smooth subschemes. However GR is a formally smooth ind-scheme. This

permits to treat D-modules on GR as “concrete” objects in the same way

as if GR were a smooth finite dimensional variety, i.e., to identify them with

certain sheaves of O-modules equipped with some extra structure. Namely,

assume we have an O-module P on GR such that each local section of P
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is supported on some subscheme of GR. Then one easily defines what is a

continuous right action of DerOGR on P . Such P equipped with such an

action is the same as a D-module on GR (we also assume an appropriate

quasi-coherency condition). Details can be found in ???.

5.2.11. Remark. We see that it is the right D-modules that make sense as

sheaves in this infinite dimensional setting. The reason for this is quite

finite dimensional. Indeed, if i : Y ↪→ Z is a closed embedding of smooth

manifolds and M is a D-module on Y then in order to identify M with a

subsheaf of i∗M one needs to consider right D-modules.

5.2.12. According to 3.4.3 one has the groupoid Z torsθ(O), which is the

local analog of Z torsθ(X). A choice of L ∈ Z torsθ(O) (which essentially

amounts to that of square root of ωO) defines the “local” Pfaffian line bundle

λloc
L on GR (see 4.6). The action of g ⊗ K on GR by left infinitesimal

translations lifts to the action of the central extension g̃ ⊗ K from 2.5.1 on

λloc
L such that 1 ∈ C ⊂ g̃ ⊗ K acts as multiplication by −1 (see 4.6.5).

This yields an antihomomorphism U
′ → Γ(GR,D′) where U

′ = U
′(g ⊗ K)

is the completed twisted universal enveloping algebra defined in 2.9.4 and

Γ(GR,D′) is the ring of λloc
L -twisted differential operators on GR. Hence for

any D-module M on GR the algebra U
′ acts on Mλ−1

L := M⊗OGR (λloc
L )⊗−1.

So Γ(GR, Mλ−1
L ) is a (left) U

′-module.

For example, consider the D-module I1 of δ-functions at the distinguished

point of GR. The U
′-module Γ(GR, I1λ

−1
L ) is the vacuum module Vac′.

5.2.13. Recall (see 4.5.8) that GR is stratified by G(O)-orbits Orbχ labeled

by χ ∈ P+(LG). Denote by Iχ the irreducible “intersection cohomology” D-

module on GR that corresponds to Orbχ.

Here is the first part of our main local theorem.

5.2.14. Theorem. The U
′-module Γ(GR, Iχλ−1

L ) is isomorphic to a sum of

several copies of Vac′, and H i(GR, Iχλ−1
L ) = 0 for i > 0.
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Remark. This theorem means (see 5.4.8, 5.4.10) that the Harish-Chandra

module Vac′ is an eigenmodule of the Harish-Chandra version of the Hecke

functors from 7.8.2, 7.14.1.

5.2.15. The group AutO acts on GR, and the action of its Lie algebra

Der O lifts to λloc
L (see 4.6.7). The second part of our theorem describes the

action of DerO on Γ(GR, Iχλ−1
L ).

Consider the scheme of local Lg-opers OpLg(O) = SpecALg(O) from 3.2.1.

Write A instead of ALg(O). Just as in 5.2.8 L defines a family of LG-opers

on SpecO parametrized by SpecA. This family defines an LG-torsor FA

over Spec A equipped with an action of DerO compatible with its action on

A; see 3.5.4∗). The FA-twist of the LG-module V χ is a vector bundle over

Spec A. Denote by V χ
LA the A-module of its sections; Der O acts on it.

5.2.16. Theorem. There is a canonical isomorphism of U
′-modules

Γ(GR, Iχλ−1
L )→∼Vac′⊗AV χ

LA(257)

compatible with the action of DerO.

Here we use the A-module structure on V ac′ that comes from the Feigin–

Frenkel isomorphism (80).

5.2.17. A few words about the proofs. The global theorem follows from

the local one by an easy local-to-global argument similar to that used in 2.8.

The proof of the local theorem is based on the interplay of the following two

key structures:

(i) The Satake equivalence ([Gi95], [MV]) between the tensor category of

representations of LG and the category of D-modules on GR generated

by Iχ’s equipped with the “convolution” tensor structure.

(ii) The “renormalized” enveloping algebra U �. The morphism of algebras

U
′ → Γ(GR,D′) is neither injective (it kills the annihilator I of Vac′ in

∗)In 3.5.4 we used the notation F
0
G instead of FA and we considered the “particular”

case where L is a square root of ωO.
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the center Z of U
′) nor surjective (its image does not contain DerO).

We decompose it as U
′ → U � → Γ(GR,D′) where U � is obtained by

“adding” to U
′
/IU

′ the algebroid I/I2 from 3.6.5 (the commutation

relations between zg(O) = Z/I ⊂ U
′
/IU

′ and I/I2 come from the

algebroid structure on I/I2, they are almost of Heisenberg type). The

vacuum representation Vac′ is irreducible as an U �-module; the same

is true for Γ(GR, Iχλ−1), χ ∈ P+(LG).

5.2.18. Here is the idea of the proof of 5.2.16 (we assume 5.2.14). Set

z := zg(O). Consider the z-modules V χ
Lz

:= Hom
U

′(Vac′,Γ(GR, Iχλ−1
L )), so

Γ(GR, Iχλ−1
L ) = Vac′⊗

z
V χ
Lz

. Some Tannakian formalism joint with Satake

equivalence yields a canonical LG-torsor Fz over Spec z such that V χ
Lz

are F-

twists of V χ. The U �-module structure on Γ(GR, Iχλ−1
L ) defines the action

of the Lie algebroid I/I2 on Fz. Some extra geometric considerations define a

canonical B-structure on Fz, which satisfies the “oper” property with respect

to the action of DerO ⊂ I/I2. Now the results of 3.5, 3.6 yield a canonical

identification (Spec z,Fz)→∼(Spec A,FA) such that A→∼ z is the Feigin–Frenkel

isomorphism, and we are done.

5.2.19. DO WE NEED IT???

Here is a direct construction of M that does not appeal to twisted

D-modules. For x ∈ X consider the scheme BunG,x̄ (see 2.3.1). For

L ∈ Z torsθ(X) denote by λL,x̄ the pull-back of the line bundle λL to BunG,x̄.

Let g̃ ⊗ Kx be the central extension of g ⊗ Kx from 2.5.1, so the g ⊗ Kx-

action on BunG,x̄ lifts canonically to a g̃ ⊗ Kx-action on λL,x̄ such that

1 ∈ C acts as identity (see 4.4.12). Denote by BunG,L,x̄ the space of the

Gm-torsor over BunG,x̄ that corresponds to λL,x̄. We have a Harish-Chandra

pair ˜(g ⊗ Kx, Gm × G(Ox)),Lie Gm = C ⊂ g̃ ⊗ Kx. The g̃ ⊗ Kx-action on

BunG,L,x̄ extends to the action of this pair in the obvious way.

Note that BunG = Gm × G(Ox) \ BunG,L,x̄. Therefore by 1.2.4 and 1.2.6

we have the functor ∆L :
(
g̃ ⊗ Kx, Gm × G(Ox)

)
mod → M�(BunG).
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Consider the projection Gm ×G(Ox) → Gm as a character; let Vac∼ be the

corresponding induced Harish-Chandra module. One has

ML = ∆L(Vac∼).(258)

Let us identify the ALg(X)-module structure on ML. The action

of End(Vac∼) = zg(Ox) on ∆L(Vac∼) identifies, via Feigin-Frenkel’s

isomorphism ϕOx (see 3.2.2) with an ALg(Ox)-action. This action factors

through the quotient ALg(X).

5.3. The Satake equivalence. We recall the basic facts and constructions,

and fix notation. For details and proofs see [MV]. The authors of [MV] use

perverse sheaves; we use D-modules.

5.3.1. Consider the affine (or loop) Grassmannian GR = G(K)/G(O) (as

usual K = C((t)), O = C[[t]]); this is a formally smooth ind-projective

ind-scheme (see 4.5.1). It carries the stratification by G(O)-orbits Orbχ,

χ ∈ P+(LG) (see 4.5.8). Each stratum is Aut0 O-invariant.

In 4.5.10 we introduced the notion of parity of a connected component of

GR. According to 4.5.11

All the strata of an even (resp. odd) component of

GR have even (resp. odd) dimension.
(259)

5.3.2. Lemma.

(i) Each stratum Orbχ is connected and simply connected.

(ii) Any smooth D-module on Orbχ is constant.

(iii) Orbχ has cohomology only in even degrees.

Proof. Denote by Stabx the stabilizer of x ∈ GR in G(O). The image

of Stabx in G(O/tO) = G is a parabolic subgroup Px and the morphism

G(O)/ Stabx → G/Px is a locally trivial fibration whose fibers are

isomorphic to an affine space. Now (i) and (iii) are clear. Notice that Orbχ

is projective and according to (259) Orbχ\Orbχ has codimension ≥ 2. So by
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Deligne’s theorem∗) a smooth D-module on Orbχ has regular singularities

and therefore (ii) follows from (i).

Denote by P the category of coherent (or, equivalently, holonomic) D-

modules on GR smooth along our stratification.

5.3.3. Proposition.

(i) The category P is semisimple.

(ii) If M ∈ P is supported on an even (resp. odd) component then

Ha
DR(GR, M) = 0 if a is odd (resp. even).

Proof. Denote by Iχ the intersection cohomology perverse sheaf of C-

vector spaces on Orbχ. Denote by GR(χ) the connected component of GR
containing Orbχ and by p(χ) the parity of GR(χ). According to Lusztig

(Theorem 11c from [Lu82] ) Iχ has the following property: the cohomology

sheaves H i(Iχ) are zero unless i mod 2 = p(χ). Denote by C the category

of all objects of Db(GR(χ)) having this property and smooth along our

stratification. It follows from (259) and 5.3.2 (iii) that for any M, N ∈ C

one has H i(GR(χ), M) = 0 unless i mod 2 = p(χ) and Exti(M, N∗) = 0

for odd i (here N∗ is the Verdier dual of N). In particular H i(GR, Iχ) = 0

unless i mod 2 = p(χ) and Ext1(Iχ1 , Iχ2) = 0. Using 5.3.2 (ii) one gets the

Proposition.

5.3.4. According to 5.3.2 (ii) the simple objects of P are “intersection

cohomology” D-modules Iχ of the strata Orbχ. Thus 5.3.3 (i) implies

that any object of P has a structure of G(O)-equivariant or Aut0 O �

G(O)-equivariant D-module. Such structure is unique and any morphism

is compatible with it (since our groups are connected). We see that

∗)Instead of using Deligne’s theorem one can notice that for any vector bundle on Orbχ

its analytic sections are algebraic. Applying this to horizontal analytic sections of a vector

bundle on Orbχ equipped with an integrable connection one sees that (ii) follows from (i).


